Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Banzhaf value for generalized probabilistic communication situations

  • S.I.: SING 14
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we generalize the graph Banzhaf value, proposed by Alonso-Meijide and Fiestras-Janeiro (Naval Res Logist 53(3):198–203, 2006) in the deterministic communication situations, to the generalized probabilistic communication situations. This new value is called the probabilistic Banzhaf value. We provide two axiomatic characterizations of the value by the probabilistic versions of component total power, fairness and balanced contributions. Furthermore, we give an alternative characterization of the value by using the probabilistic player potential function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Meijide, J. M., Carreras, F., Fiestras-Janeiro, M. G., & Owen, G. (2007). A comparative axiomatic characterization of the Banzhaf–Owen coalitional value. Decision Support Systems, 43, 701–712.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., & Fiestras-Janeiro, M. G. (2002). Modification of the Banzhaf value for games with a coalition structure. Annals of Operations Research, 109, 213–227.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., & Fiestras-Janeiro, M. G. (2006). The Banzhaf value and communication situations. Naval Research Logistics, 53(3), 198–203.

    Article  Google Scholar 

  • Amer, R., Carreras, F., & Giménez, J. M. (2002). The modified Banzhaf value for games with coalition structure: An axiomatic characterization. Mathematical Social Sciences, 43, 45–54.

    Article  Google Scholar 

  • Banzhaf, J. F. (1965). Weighted voting does not work: A mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Calvo, E., Lasaga, J., & van den Nouweland, A. (1999). Values of games with probabilistic graphs. Mathematical Social Sciences, 37, 79–95.

    Article  Google Scholar 

  • Casajus, A. (2011). Marginality, differential marginality, and the Banzhaf value. Theory and Decision, 71, 365–372.

    Article  Google Scholar 

  • Dragan, I. (1996). New mathematical properties of the Banzhaf value. European Journal of Operational Research, 95(2), 451–463.

    Article  Google Scholar 

  • Feltkamp, V. (1995). Alternative axiomatic characterization of the Shapley and Banzhaf values. International Journal of Game Theory, 24, 179–186.

    Article  Google Scholar 

  • Ghintran, A., González-Arangüena, E., & Manuel, C. (2012). A probabilistic position value. Annals of Operations Research, 1, 183–196.

    Article  Google Scholar 

  • Gómez, D., González-Arangüena, E., Manuel, C., & Owen, G. (2008). A value for generalized probabilistic communication situations. European Journal of Operational Research, 190, 539–556.

    Article  Google Scholar 

  • Haimanko, O. (2019). Composition independence in compound games: A characterization of the Banzhaf power index and the Banzhaf value. International Journal of Game Theory, 48, 755–768.

    Article  Google Scholar 

  • Harsanyi, J. C. (1959). A bargaining model for cooperative \(n\)-person games. In A. W. Tucker & R. D. Luce (Eds.), Contributions to the theory of games IV (pp. 325–355). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Meessen, R. (1988). Communication games, Master’s thesis, Department of Mathematics, University of Nijmegen, The Netherlands (in Dutch).

  • Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research, 2(3), 225–229.

    Article  Google Scholar 

  • Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval Research Logistics, 22, 741–750.

    Article  Google Scholar 

  • Owen, G. (1986). Values of graph-restricted games. SIAM Journal on Discrete Mathematics, 7, 210–220.

    Article  Google Scholar 

  • Ridaoui, M., Grabisch, M., & Labreuche, C. (2018). An axiomatization of the Banzhaf value and interaction index for multichoice games. Université Panthéon-Sorbonne (Paris 1), Centre d’Economie de la Sorbonne.

  • Shapley, L. S. (1953). A value for \(n\)-person games. In H. Kuhn & A. Tucker (Eds.), Contributions to the theory of games II (pp. 307–317). Princeton: Princeton University Press.

    Google Scholar 

  • Slikker, M. (2005). Link monotonic allocation schemes. International Game Theory Review, 7, 473–489.

    Article  Google Scholar 

  • Slikker, M., van den Nouweland, A. (2001). Social and economic networks in cooperative game theory. In Theory and Decision Library (Vol. 27).

Download references

Acknowledgements

The authors are grateful to anonymous referees for valuable comments and suggestions that contributed greatly to the improvement of this paper. This research was partially supported by the National Natural Science Foundation of China (No. 11971298), Zhejiang Federation of Humanities and Social Sciences Circles Research Project (No. 2018B08), Ningbo Soft Science Research Project (No. 2017A10005) and the National Social Science Fund of China (No. 19BGL001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfang Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Shan, E. The Banzhaf value for generalized probabilistic communication situations. Ann Oper Res 301, 225–244 (2021). https://doi.org/10.1007/s10479-020-03914-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03914-z

Keywords

Mathematics Subject Classification

JEL classification

Navigation