Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A trade-off multiobjective dynamic programming procedure and its application to project portfolio selection

  • S.I. : MOPGP19
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a stochastic discrete multiobjective programming process with a finite number of stages. The number of states at each stage and the number of feasible decisions at each state are also finite. The aim of the paper is to propose a new interactive procedure for such a problem based on trade-off analysis. The procedure is illustrated with project portfolio selection. There are many organizations with moderately large portfolios of projects. Although the problem under discussion is not very large, it is difficult to solve, since projects are not implemented simultaneously. Moreover, the companies must take into account the risk that a particular project, which is planned to start in the future, may not be ready for implementation. We present an interactive trade-off procedure, based on the stochastic approach, as a new proposition to solve such a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allmendinger, R., Ehrgott, M., Gandibleux, X., & Geiger, M. J. (2017). Navigation in multiobjective optimization methods. Journal of Multi-criteria Analysis, 24, 57–70.

    Google Scholar 

  • Archer, N. P., & Ghasemzadeh, F. (1999). An integrated framework for project selection. International Journal of Project Management, 17(4), 207–216.

    Google Scholar 

  • Aussel, D., Neveu, P., Tsuanyo, D., & Azoumah, Y. (2018). On the equivalence and comparison of economic criteria for energy projects: Application on PV/diesel hybrid system optimal design. Energy Conversion and Management, 163, 493–506.

    Google Scholar 

  • Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., & Plà-Santamaria, D. (2012). Socially responsible investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487–494.

    Google Scholar 

  • Bellman, R. (1957). Dynamic programming. New York, NY: Princeton University Press.

    Google Scholar 

  • Ben Abdelaziz, F., Colapinto, C., La Torre, D., & Liuzzi, D. (2020). A stochastic dynamic multiobjective model for sustainable decision making. Annals of Operations Research, 293, 539–556.

    Google Scholar 

  • Benayoun, R., de Montgolfier, J., Tergny, J., & Larichev, O. (1971). Linear programming with multiple objective functions: Step Method (STEM). Mathematical Programming, 1, 366–375.

    Google Scholar 

  • Brown, T. A., & Strauch, R. E. (1965). Dynamic programming in multiplicative lattices. Journal of Mathematical Analysis and Applications, 12, 364–370.

    Google Scholar 

  • Carazo, A. F. (2015). Multi-criteria project portfolio selection. In C. Schwindt & J. Zimmermann (Eds.), Handbook on project management and scheduling (Vol. 2, pp. 709–728)., International handbooks on information systems Cham: Springer.

    Google Scholar 

  • Carello, G., Lanzarone, E., & Mattia, S. (2018). Trade-off between stakeholders’ goals in the home care nurse-to-patient assignment problem. Operations Research for Health Care, 16, 29–40.

    Google Scholar 

  • Chen, S. Y., & Fu, G. T. (2005). Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems. Fuzzy Sets and Systems, 152(3), 499–512.

    Google Scholar 

  • Chen, W. N., & Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to optimize cash flows: A Monte Carlo ant colony system approach. Journal of Computer Science and Technology, 27(5), 950–965.

    Google Scholar 

  • Danesh, D., Ryan, M. J., & Abbasi, A. (2017). A systematic comparison of multi-criteria decision making methods for the improvement of project portfolio management in complex organisations. International Journal of Management and Decision Making, 16(3), 280–320.

    Google Scholar 

  • Danesh, D., Ryan, M. J., & Abbasi, A. (2018). Multi-criteria decision-making methods for project portfolio management: A literature review. International Journal of Management and Decision Making, 17(1), 75–94.

    Google Scholar 

  • de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. D. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research, 250(1), 179–191.

    Google Scholar 

  • Debnath, A., Roy, J., Kar, S., Zavadskas, E. K., & Antucheviciene, J. (2017). A hybrid MCDM approach for strategic project portfolio selection of agro by-products. Sustainability, 9(8), 1302.

    Google Scholar 

  • Dobrovolskienė, N., & Tamošiūnienė, R. (2016). An index to measure sustainability of a business project in the construction industry: Lithuanian case. Sustainability, 8, 14.

    Google Scholar 

  • Doerner, K. F., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2006). Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. European Journal of Operational Research, 171(3), 830–841.

    Google Scholar 

  • Fan, Z. P., Liu, Y., & Feng, B. (2010). A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations. European Journal of Operational Research, 207(1), 906–915.

    Google Scholar 

  • Fernandez, E., Lopez, E., Mazcorro, G., Olmedo, R., & Coello, C. A. C. (2013). Application of the non-outranked sorting genetic algorithm to public project portfolio selection. Information Sciences, 228, 131–149.

    Google Scholar 

  • Fiala, P. (2018). Project portfolio designing using data envelopment analysis and De Novo optimization. Central European Journal of Operations Research, 26, 847–859.

    Google Scholar 

  • Fiala, P., Artl, J., & Artlova, M. (2014). Management of dynamic project portfolio. International Journal of Innovation, Management and Technology, 5(6), 455–459.

    Google Scholar 

  • Geoffrion, A., Dyer, J., & Feinberg, A. (1972). An interactive approach for multi-criterion optimization with an application to the operation of an academic department. Management Science, 19(4), 357–368.

    Google Scholar 

  • Hämäläinen, R. P., & Mäntysaari, J. (2002). Dynamic multi-objective heating optimization. European Journal of Operational Research, 142(2), 1–15.

    Google Scholar 

  • Hartikainen, M., Miettinen, K., & Klamroth, K. (2019). Interactive nonconvex pareto navigator for multiobjective optimization. European Journal of Operational Research, 275(1), 238–251.

    Google Scholar 

  • Helbig, M., Deb, K., & Engelbrecht, A. (2016). Key challenges and future directions of dynamic multi-objective optimization. In Proceeding of the IEEE congress on evolutionary computation (pp. 1256–1261).

  • Jiang, Y., Liang, X., Li, M., & Liang, H. (2019). Stochastic multiple criteria decision making with criteria 2-tuple aspirations. Soft Computing, 23, 11167–11180.

    Google Scholar 

  • Kadziński, M., Tomczyk, M. K., & Słowiński, R. (2020). Preference-based cone contraction algorithms for interactive evolutionary multiple objective optimization. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2019.100602.

    Article  Google Scholar 

  • Kaliszewski, I. (2000). Using trade-off information in decision-making algorithms. Computers and Operations Research, 27(2), 161–182.

    Google Scholar 

  • Kaliszewski, I., & Michałowski, W. (1999). Searching for psychologically stable solutions of multiple criteria decision problems. European Journal of Operational Research, 118(3), 549–562.

    Google Scholar 

  • Keeney, R. L. (2002). Common mistakes in making value trade-offs. Operations Research, 50(6), 935–945.

    Google Scholar 

  • Klamroth, K., & Wiecek, M. M. (2000). Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics, 47(1), 57–76.

    Google Scholar 

  • Koppinen, T., & Rosqvist, T. (2010). Dynamic project portfolio selection in infrastructure sector. In J. Amadi-Echendu, K. Brown, R. Willett, & J. Mathew (Eds.), Definitions, concepts and scope of engineering asset management. Engineering asset management review (vol. 1, pp. 311–326). London: Springer.

  • Li, D., & Haimes, Y. Y. (1989). Multiobjective dynamic programming: The state of the art. Control Theory and Advanced Technology, 5(4), 471–483.

    Google Scholar 

  • Lokman, B., Köksalan, M., Korhonen, P. J., & Wallenius, J. (2018). An interactive approximation algorithm for multi-objective integer programs. Computers and Operations Research, 96, 80–90.

    Google Scholar 

  • Macias-Escobar, T., Cruz-Reyes, L., Fraire, H., & Dorronsoro, B. (2020). Plane separation: A method to solve dynamic multi-objective optimization problems with incorporated preferences. Future Generation Computer Systems, 110, 864–875.

    Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Marsiglio, S., & Privileggi, F. (2019). On the economic growth and environmental trade-off: A multi-objective analysis. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03217-y.

    Article  Google Scholar 

  • Miettinen, K., Eskelinen, P., Ruiz, F., & Luque, M. (2010). NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research, 206(2), 426–436.

    Google Scholar 

  • Miettinen, K., Hakanen, J., & Podkopaev, D. (2016). Interactive nonlinear multiobjective optimization methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis. International series in operations research and management science (vol. 233, pp. 931–980). New York, NY: Springer.

  • Miettinen, K., & Ruiz, F. (2016). NAUTILUS framework: Towards trade-off-free interaction in multiobjective optimization. Journal of Business Economics, 86, 5–21.

    Google Scholar 

  • Mitten, L. G. (1964). Composition principles for synthesis of optimal multistage process. Operations Research, 12(4), 610–619.

    Google Scholar 

  • Mohagheghi, V., Mousavi, S. M., Antuchevičienė, J., & Mojtahedi, M. (2019). Project portfolio selection problems: A review of models, uncertainty approaches, solution techniques, and case studies. Technological and Economic Development of Economy, 26(6), 1380–1412.

    Google Scholar 

  • Nebro, A. J., Ruiz, A. B., Barba-Gonzáles, C., García-Nieto, J., Luque, M., & Aldana-Montes, J. F. (2018). InDM2: Interactive dynamic multi-objective decision making using evolutionary algorithms. Swarm and Evolutionary Computation, 40, 184–195.

    Google Scholar 

  • Nowak, M. (2004). Preference and veto thresholds in multicriteria analysis based on stochastic dominance. European Journal of Operational Research, 158(2), 339–350.

    Google Scholar 

  • Nowak, M. (2006). INSDECM: An interactive procedure for discrete stochastic multicriteria decision making problems. European Journal of Operational Research, 175(3), 1413–1430.

    Google Scholar 

  • Nowak, M. (2007). Aspiration level approach in stochastic MCDM problems. European Journal of Operational Research, 177(3), 1626–1640.

    Google Scholar 

  • Nowak, M., Sitarz, S., & Trzaskalik, T. (2017). Interactive procedure for multiobjective dynamic programming with the mixed ordered structure. Multiple Criteria Decision Making, 12, 168–184.

    Google Scholar 

  • Nowak, M., & Trzaskalik, T. (2013). Interactive procedure for a multiobjective stochastic discrete dynamic problem. Journal of Global Optimization, 57(2), 315–330.

    Google Scholar 

  • Nowak, M., & Trzaskalik, T. (2014). Interactive approach application to stochastic multiobjective allocation problem—A two-phase approach. Multiple Criteria Decision Making, 9, 84–100.

    Google Scholar 

  • Nowak, M., & Trzaskalik, T. (2017). Optimal and near-optimal strategies in discrete stochastic multiobjective quasi-hierarchical dynamic problems. In K. Dörner, I. Ljubic, G. Pflug, & G. Tragler (Eds.), Operations research proceedings 2015. Operations research proceedings (GOR (Gesellschaft für Operations Research e.V.)) (pp. 295–300). Cham: Springer.

  • Podinovski, V. V. (1999). A DSS for multiple criteria decision analysis with imprecisely specified trade-offs. European Journal of Operational Research, 113(2), 261–270.

    Google Scholar 

  • Qi, Y., Steuer, R. E., & Wimmer, M. (2017). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251, 161–177.

    Google Scholar 

  • Rabbani, M., Aramoon Bajestani, M., & Baharian Khoshkhou, G. (2010). A multi-objective particle swarm optimization for project selection problem. Expert Systems with Applications, 37(1), 315–321.

    Google Scholar 

  • Remer, D. S., & Nieto, A. P. (1995a). A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods. International Journal of Production Economics, 42, 79–96.

    Google Scholar 

  • Remer, D. S., & Nieto, A. P. (1995b). A compendium and comparison of 25 project evaluation techniques. Part 2: Ratio, payback, and accounting methods. International Journal of Production Economics, 42, 101–129.

    Google Scholar 

  • Ruiz, A. B., Ruiz, F., Miettinen, K., Delgado-Antequera, L., & Ojalehto, V. (2019). NAUTILUS Navigator: Free search interactive multiobjective optimization without trading-off. Journal of Global Optimization, 74, 213–231.

    Google Scholar 

  • Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Research, 198(3), 697–705.

    Google Scholar 

  • Speranza, M. G. (1996). A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Computers and Operations Research, 23(5), 431–441.

    Google Scholar 

  • Steuer, R. E. (1977). An interactive multiple objective linear programming procedure. In M. K. Starr & M. Zeleny (Eds.), Multiple criteria decision making. Amsterdam: North Holland.

    Google Scholar 

  • Szymczak-Do, T. H. (2002). Strategie sprawne w wielokryterialnym stochastycznym programowaniu dynamicznym. In T. Trzaskalik (Ed.), Modelowanie preferencji a ryzyko’02 (pp. 61–74). Katowice: Akademia Ekonomiczna. (in Polish).

    Google Scholar 

  • Szymczak-Do, T. H. (2003). Generowanie strategii sprawnych i słabo sprawnych wielokryterialnego stochastycznego zadania programowania dynamicznego za pomocą metod hierarchicznych. In T. Trzaskalik (Ed.), Modelowanie preferencji a ryzyko’03 (pp. 565–582). Katowice: Akademia Ekonomiczna. (in Polish).

    Google Scholar 

  • Targiel, K. S., Nowak, M., & Trzaskalik, T. (2018). Scheduling non-critical activities using multicriteria approach. Central European Journal of Operations Research, 26, 585–598.

    Google Scholar 

  • Tozer, B., Mazzuchi, T., & Sarkani, S. (2017). Many-objective stochastic path finding using reinforcement learning. Expert Systems with Applications, 72, 371–382.

    Google Scholar 

  • Trzaskalik, T. (1986). Wybrane problemy programowania dynamicznego. Katowice: Wydawnictwo Akademii Ekonomicznej. (in Polish).

    Google Scholar 

  • Trzaskalik, T. (1996). Dynamic programming and optimality principle. In M. Warner (Ed.), International encyclopedia on business and management (pp. 1074–1083). London: Routledge.

    Google Scholar 

  • Trzaskalik, T. (2015). MCDM applications of near optimal solutions in dynamic programming. Multiple Criteria Decision Making, 10, 166–184.

    Google Scholar 

  • Trzaskalik, T., & Sitarz, S. (2007). Discrete dynamic programming with outcomes in random variable structures. European Journal of Operational Research, 177(3), 1535–1548.

    Google Scholar 

  • Wang, H., Yan, J., & Yu, J. (2017). Reference-dependent preferences and the risk–return trade-off. Journal of Financial Economics, 123(2), 395–414.

    Google Scholar 

  • Wierzbicki, A. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel, & T. Gal (Eds.), Multiple objective decision making: Theory and applications. Lecture notes in economics and mathematical systems (vol. 177, pp. 468–486). Berlin, Heidelberg: Springer.

  • Wiesemann, W., & Kuhn, D. (2015). The stochastic time‐constrained net present value problem. In Handbook on Project Management, v.2. International handbooks on information systems (pp. 753–780). Berlin: Springer.

  • Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximimizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(2), 356–367.

    Google Scholar 

  • Yang, F., Song, S., Huang, W., & Xia, Q. (2015). SMAA-PO: Project portfolio optimization problems based on stochastic multicriteria acceptability analysis. Annals of Operations Research, 233, 535–547.

    Google Scholar 

  • Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197, 71–86.

    Google Scholar 

  • Zaras, K., & Martel, J. M. (1994). Multiattribute analysis based on stochastic dominance. In B. Munier, & M. J. Machina (Eds.), Models and experiments in risk and rationality. Theory and decision library (pp. 225–248). Dordrecht: Springer.

  • Zhang, Y., Fan, Z. P., & Liu, Y. (2010). A method based on stochastic dominance degrees for stochastic multiple criteria decision making. Computers and Industrial Engineering, 58(4), 544–552.

    Google Scholar 

  • Zhao, W., Hall, N. G., & Liu, Z. (2020). Project evaluation and selection with task failures. Production and Operations Management, 29, 428–446.

    Google Scholar 

  • Zheng, R. E. N. (2017). Reservoir profiting optimal scheduling model and its application based on multi-objective dynamic programming. Water Resources and Power, 4.

  • Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519–529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Nowak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak, M., Trzaskalik, T. A trade-off multiobjective dynamic programming procedure and its application to project portfolio selection. Ann Oper Res 311, 1155–1181 (2022). https://doi.org/10.1007/s10479-020-03907-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03907-y

Keywords

Navigation