Abstract
We consider a stochastic discrete multiobjective programming process with a finite number of stages. The number of states at each stage and the number of feasible decisions at each state are also finite. The aim of the paper is to propose a new interactive procedure for such a problem based on trade-off analysis. The procedure is illustrated with project portfolio selection. There are many organizations with moderately large portfolios of projects. Although the problem under discussion is not very large, it is difficult to solve, since projects are not implemented simultaneously. Moreover, the companies must take into account the risk that a particular project, which is planned to start in the future, may not be ready for implementation. We present an interactive trade-off procedure, based on the stochastic approach, as a new proposition to solve such a problem.
Similar content being viewed by others
References
Allmendinger, R., Ehrgott, M., Gandibleux, X., & Geiger, M. J. (2017). Navigation in multiobjective optimization methods. Journal of Multi-criteria Analysis, 24, 57–70.
Archer, N. P., & Ghasemzadeh, F. (1999). An integrated framework for project selection. International Journal of Project Management, 17(4), 207–216.
Aussel, D., Neveu, P., Tsuanyo, D., & Azoumah, Y. (2018). On the equivalence and comparison of economic criteria for energy projects: Application on PV/diesel hybrid system optimal design. Energy Conversion and Management, 163, 493–506.
Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., & Plà-Santamaria, D. (2012). Socially responsible investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487–494.
Bellman, R. (1957). Dynamic programming. New York, NY: Princeton University Press.
Ben Abdelaziz, F., Colapinto, C., La Torre, D., & Liuzzi, D. (2020). A stochastic dynamic multiobjective model for sustainable decision making. Annals of Operations Research, 293, 539–556.
Benayoun, R., de Montgolfier, J., Tergny, J., & Larichev, O. (1971). Linear programming with multiple objective functions: Step Method (STEM). Mathematical Programming, 1, 366–375.
Brown, T. A., & Strauch, R. E. (1965). Dynamic programming in multiplicative lattices. Journal of Mathematical Analysis and Applications, 12, 364–370.
Carazo, A. F. (2015). Multi-criteria project portfolio selection. In C. Schwindt & J. Zimmermann (Eds.), Handbook on project management and scheduling (Vol. 2, pp. 709–728)., International handbooks on information systems Cham: Springer.
Carello, G., Lanzarone, E., & Mattia, S. (2018). Trade-off between stakeholders’ goals in the home care nurse-to-patient assignment problem. Operations Research for Health Care, 16, 29–40.
Chen, S. Y., & Fu, G. T. (2005). Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems. Fuzzy Sets and Systems, 152(3), 499–512.
Chen, W. N., & Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to optimize cash flows: A Monte Carlo ant colony system approach. Journal of Computer Science and Technology, 27(5), 950–965.
Danesh, D., Ryan, M. J., & Abbasi, A. (2017). A systematic comparison of multi-criteria decision making methods for the improvement of project portfolio management in complex organisations. International Journal of Management and Decision Making, 16(3), 280–320.
Danesh, D., Ryan, M. J., & Abbasi, A. (2018). Multi-criteria decision-making methods for project portfolio management: A literature review. International Journal of Management and Decision Making, 17(1), 75–94.
de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. D. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research, 250(1), 179–191.
Debnath, A., Roy, J., Kar, S., Zavadskas, E. K., & Antucheviciene, J. (2017). A hybrid MCDM approach for strategic project portfolio selection of agro by-products. Sustainability, 9(8), 1302.
Dobrovolskienė, N., & Tamošiūnienė, R. (2016). An index to measure sustainability of a business project in the construction industry: Lithuanian case. Sustainability, 8, 14.
Doerner, K. F., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2006). Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. European Journal of Operational Research, 171(3), 830–841.
Fan, Z. P., Liu, Y., & Feng, B. (2010). A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations. European Journal of Operational Research, 207(1), 906–915.
Fernandez, E., Lopez, E., Mazcorro, G., Olmedo, R., & Coello, C. A. C. (2013). Application of the non-outranked sorting genetic algorithm to public project portfolio selection. Information Sciences, 228, 131–149.
Fiala, P. (2018). Project portfolio designing using data envelopment analysis and De Novo optimization. Central European Journal of Operations Research, 26, 847–859.
Fiala, P., Artl, J., & Artlova, M. (2014). Management of dynamic project portfolio. International Journal of Innovation, Management and Technology, 5(6), 455–459.
Geoffrion, A., Dyer, J., & Feinberg, A. (1972). An interactive approach for multi-criterion optimization with an application to the operation of an academic department. Management Science, 19(4), 357–368.
Hämäläinen, R. P., & Mäntysaari, J. (2002). Dynamic multi-objective heating optimization. European Journal of Operational Research, 142(2), 1–15.
Hartikainen, M., Miettinen, K., & Klamroth, K. (2019). Interactive nonconvex pareto navigator for multiobjective optimization. European Journal of Operational Research, 275(1), 238–251.
Helbig, M., Deb, K., & Engelbrecht, A. (2016). Key challenges and future directions of dynamic multi-objective optimization. In Proceeding of the IEEE congress on evolutionary computation (pp. 1256–1261).
Jiang, Y., Liang, X., Li, M., & Liang, H. (2019). Stochastic multiple criteria decision making with criteria 2-tuple aspirations. Soft Computing, 23, 11167–11180.
Kadziński, M., Tomczyk, M. K., & Słowiński, R. (2020). Preference-based cone contraction algorithms for interactive evolutionary multiple objective optimization. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2019.100602.
Kaliszewski, I. (2000). Using trade-off information in decision-making algorithms. Computers and Operations Research, 27(2), 161–182.
Kaliszewski, I., & Michałowski, W. (1999). Searching for psychologically stable solutions of multiple criteria decision problems. European Journal of Operational Research, 118(3), 549–562.
Keeney, R. L. (2002). Common mistakes in making value trade-offs. Operations Research, 50(6), 935–945.
Klamroth, K., & Wiecek, M. M. (2000). Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics, 47(1), 57–76.
Koppinen, T., & Rosqvist, T. (2010). Dynamic project portfolio selection in infrastructure sector. In J. Amadi-Echendu, K. Brown, R. Willett, & J. Mathew (Eds.), Definitions, concepts and scope of engineering asset management. Engineering asset management review (vol. 1, pp. 311–326). London: Springer.
Li, D., & Haimes, Y. Y. (1989). Multiobjective dynamic programming: The state of the art. Control Theory and Advanced Technology, 5(4), 471–483.
Lokman, B., Köksalan, M., Korhonen, P. J., & Wallenius, J. (2018). An interactive approximation algorithm for multi-objective integer programs. Computers and Operations Research, 96, 80–90.
Macias-Escobar, T., Cruz-Reyes, L., Fraire, H., & Dorronsoro, B. (2020). Plane separation: A method to solve dynamic multi-objective optimization problems with incorporated preferences. Future Generation Computer Systems, 110, 864–875.
Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
Marsiglio, S., & Privileggi, F. (2019). On the economic growth and environmental trade-off: A multi-objective analysis. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03217-y.
Miettinen, K., Eskelinen, P., Ruiz, F., & Luque, M. (2010). NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research, 206(2), 426–436.
Miettinen, K., Hakanen, J., & Podkopaev, D. (2016). Interactive nonlinear multiobjective optimization methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis. International series in operations research and management science (vol. 233, pp. 931–980). New York, NY: Springer.
Miettinen, K., & Ruiz, F. (2016). NAUTILUS framework: Towards trade-off-free interaction in multiobjective optimization. Journal of Business Economics, 86, 5–21.
Mitten, L. G. (1964). Composition principles for synthesis of optimal multistage process. Operations Research, 12(4), 610–619.
Mohagheghi, V., Mousavi, S. M., Antuchevičienė, J., & Mojtahedi, M. (2019). Project portfolio selection problems: A review of models, uncertainty approaches, solution techniques, and case studies. Technological and Economic Development of Economy, 26(6), 1380–1412.
Nebro, A. J., Ruiz, A. B., Barba-Gonzáles, C., García-Nieto, J., Luque, M., & Aldana-Montes, J. F. (2018). InDM2: Interactive dynamic multi-objective decision making using evolutionary algorithms. Swarm and Evolutionary Computation, 40, 184–195.
Nowak, M. (2004). Preference and veto thresholds in multicriteria analysis based on stochastic dominance. European Journal of Operational Research, 158(2), 339–350.
Nowak, M. (2006). INSDECM: An interactive procedure for discrete stochastic multicriteria decision making problems. European Journal of Operational Research, 175(3), 1413–1430.
Nowak, M. (2007). Aspiration level approach in stochastic MCDM problems. European Journal of Operational Research, 177(3), 1626–1640.
Nowak, M., Sitarz, S., & Trzaskalik, T. (2017). Interactive procedure for multiobjective dynamic programming with the mixed ordered structure. Multiple Criteria Decision Making, 12, 168–184.
Nowak, M., & Trzaskalik, T. (2013). Interactive procedure for a multiobjective stochastic discrete dynamic problem. Journal of Global Optimization, 57(2), 315–330.
Nowak, M., & Trzaskalik, T. (2014). Interactive approach application to stochastic multiobjective allocation problem—A two-phase approach. Multiple Criteria Decision Making, 9, 84–100.
Nowak, M., & Trzaskalik, T. (2017). Optimal and near-optimal strategies in discrete stochastic multiobjective quasi-hierarchical dynamic problems. In K. Dörner, I. Ljubic, G. Pflug, & G. Tragler (Eds.), Operations research proceedings 2015. Operations research proceedings (GOR (Gesellschaft für Operations Research e.V.)) (pp. 295–300). Cham: Springer.
Podinovski, V. V. (1999). A DSS for multiple criteria decision analysis with imprecisely specified trade-offs. European Journal of Operational Research, 113(2), 261–270.
Qi, Y., Steuer, R. E., & Wimmer, M. (2017). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251, 161–177.
Rabbani, M., Aramoon Bajestani, M., & Baharian Khoshkhou, G. (2010). A multi-objective particle swarm optimization for project selection problem. Expert Systems with Applications, 37(1), 315–321.
Remer, D. S., & Nieto, A. P. (1995a). A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods. International Journal of Production Economics, 42, 79–96.
Remer, D. S., & Nieto, A. P. (1995b). A compendium and comparison of 25 project evaluation techniques. Part 2: Ratio, payback, and accounting methods. International Journal of Production Economics, 42, 101–129.
Ruiz, A. B., Ruiz, F., Miettinen, K., Delgado-Antequera, L., & Ojalehto, V. (2019). NAUTILUS Navigator: Free search interactive multiobjective optimization without trading-off. Journal of Global Optimization, 74, 213–231.
Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Research, 198(3), 697–705.
Speranza, M. G. (1996). A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Computers and Operations Research, 23(5), 431–441.
Steuer, R. E. (1977). An interactive multiple objective linear programming procedure. In M. K. Starr & M. Zeleny (Eds.), Multiple criteria decision making. Amsterdam: North Holland.
Szymczak-Do, T. H. (2002). Strategie sprawne w wielokryterialnym stochastycznym programowaniu dynamicznym. In T. Trzaskalik (Ed.), Modelowanie preferencji a ryzyko’02 (pp. 61–74). Katowice: Akademia Ekonomiczna. (in Polish).
Szymczak-Do, T. H. (2003). Generowanie strategii sprawnych i słabo sprawnych wielokryterialnego stochastycznego zadania programowania dynamicznego za pomocą metod hierarchicznych. In T. Trzaskalik (Ed.), Modelowanie preferencji a ryzyko’03 (pp. 565–582). Katowice: Akademia Ekonomiczna. (in Polish).
Targiel, K. S., Nowak, M., & Trzaskalik, T. (2018). Scheduling non-critical activities using multicriteria approach. Central European Journal of Operations Research, 26, 585–598.
Tozer, B., Mazzuchi, T., & Sarkani, S. (2017). Many-objective stochastic path finding using reinforcement learning. Expert Systems with Applications, 72, 371–382.
Trzaskalik, T. (1986). Wybrane problemy programowania dynamicznego. Katowice: Wydawnictwo Akademii Ekonomicznej. (in Polish).
Trzaskalik, T. (1996). Dynamic programming and optimality principle. In M. Warner (Ed.), International encyclopedia on business and management (pp. 1074–1083). London: Routledge.
Trzaskalik, T. (2015). MCDM applications of near optimal solutions in dynamic programming. Multiple Criteria Decision Making, 10, 166–184.
Trzaskalik, T., & Sitarz, S. (2007). Discrete dynamic programming with outcomes in random variable structures. European Journal of Operational Research, 177(3), 1535–1548.
Wang, H., Yan, J., & Yu, J. (2017). Reference-dependent preferences and the risk–return trade-off. Journal of Financial Economics, 123(2), 395–414.
Wierzbicki, A. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel, & T. Gal (Eds.), Multiple objective decision making: Theory and applications. Lecture notes in economics and mathematical systems (vol. 177, pp. 468–486). Berlin, Heidelberg: Springer.
Wiesemann, W., & Kuhn, D. (2015). The stochastic time‐constrained net present value problem. In Handbook on Project Management, v.2. International handbooks on information systems (pp. 753–780). Berlin: Springer.
Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximimizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(2), 356–367.
Yang, F., Song, S., Huang, W., & Xia, Q. (2015). SMAA-PO: Project portfolio optimization problems based on stochastic multicriteria acceptability analysis. Annals of Operations Research, 233, 535–547.
Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197, 71–86.
Zaras, K., & Martel, J. M. (1994). Multiattribute analysis based on stochastic dominance. In B. Munier, & M. J. Machina (Eds.), Models and experiments in risk and rationality. Theory and decision library (pp. 225–248). Dordrecht: Springer.
Zhang, Y., Fan, Z. P., & Liu, Y. (2010). A method based on stochastic dominance degrees for stochastic multiple criteria decision making. Computers and Industrial Engineering, 58(4), 544–552.
Zhao, W., Hall, N. G., & Liu, Z. (2020). Project evaluation and selection with task failures. Production and Operations Management, 29, 428–446.
Zheng, R. E. N. (2017). Reservoir profiting optimal scheduling model and its application based on multi-objective dynamic programming. Water Resources and Power, 4.
Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519–529.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nowak, M., Trzaskalik, T. A trade-off multiobjective dynamic programming procedure and its application to project portfolio selection. Ann Oper Res 311, 1155–1181 (2022). https://doi.org/10.1007/s10479-020-03907-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-020-03907-y