Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The antagonism and cohesion of the upstream supply chain under information asymmetry

  • S.I.: Information- Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Information asymmetry leads to short-term competitive antagonism between downstream manufacturers and upstream suppliers. This paper applies a master-slave game to reproduce the interest conflict between a manufacturer and a supplier, and proposes a cooperative decision-making model based on information sharing, considering the interest consistency of upstream supply chain members. Additionally, the overall profit coordination mechanism is constructed to ensure the continuation of the cooperative decision-making relationship. In addition, to ensure that the supplier participating in cooperative decision-making has the supply capacity desired by the manufacturer, a rational evaluation system combined with game theory is employed to determine the most suitable participating supplier. A numerical example is given to demonstrate the systematization and effectiveness of the proposed method. Finally, through sensitivity analysis and comparative analysis, managerial insights and recommendations are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badri, H., Ghomi, S. F., & Hejazi, T. H. (2017). A two-stage stochastic programming approach for value-based closed-loop supply chain network design. Transportation Research Part E: Logistics and Transportation Review, 105, 1–17.

    Google Scholar 

  • Baumers, M., Dickens, P., Tuck, C., & Hague, R. (2016). The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technological Forecasting and Social Change, 102, 193–201.

    Google Scholar 

  • Cai, J., Hu, X., Tadikamalla, P. R., & Shang, J. (2017). Flexible contract design for VMI supply chain with service-sensitive demand: Revenue-sharing and supplier subsidy. European Journal of Operational Research, 261(1), 143–153.

    Google Scholar 

  • Chen, Y. J., & Deng, M. (2015). Information sharing in a manufacturer-supplier relationship: Suppliers’ incentive and production efficiency. Production and Operations Management, 24(4), 619–633.

    Google Scholar 

  • Chiu, C. H., & Choi, T. M. (2016). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research, 240(2), 489–507.

    Google Scholar 

  • Dai, Z., Aqlan, F., & Gao, K. (2017). Optimizing multi-echelon inventory with three types of demand in supply chain. Transportation Research Part E: Logistics and Transportation Review, 107, 141–177.

    Google Scholar 

  • Dastyar, H., & Pannek, J. (2019). Numeric evaluation of game-theoretic collaboration modes in supplier development. Applied Sciences, 9(20), 4331.

    Google Scholar 

  • Du, B., Guo, S., Huang, X., Li, Y., & Guo, J. (2015). A Pareto supplier selection algorithm for minimum the life cycle cost of complex product system. Expert Systems with Applications, 42(9), 4253–4264.

    Google Scholar 

  • Esmaeili, M., & Ghobadi, S. N. (2018). A game theory model for pricing and supplier selection in a closed-loop supply chain. International Journal of Procurement Management, 11(4), 472–494.

    Google Scholar 

  • Fahimnia, B., Sarkis, J., Gunasekaran, A., & Farahani, R. (2017). Decision models for sustainable supply chain design and management. Annals of Operations Research, 250(2), 277–278.

    Google Scholar 

  • Fathollah Bayati, M., & Sadjadi, S. J. (2016). Two-tier supplier base efficiency evaluation via network dea: A game theory approach. International Journal of Engineering, 29(7), 931–939.

    Google Scholar 

  • Ferrara, M., Khademi, M., Salimi, M., & Sharifi, S. (2017). A dynamic Stackelberg game of supply chain for a corporate social responsibility. Discrete Dynamics in Nature and Society, 2017, 1–8.

    Google Scholar 

  • Fu, Y. K. (2019). An integrated approach to catering supplier selection using ahp-aras-mcgp methodology. Journal of Air Transport Management, 75(1), 164–169.

    Google Scholar 

  • Gao, J., Yang, X., & Liu, D. (2017). Uncertain Shapley value of coalitional game with application to supply chain alliance. Applied Soft Computing, 56, 551–556.

    Google Scholar 

  • Govindan, K., & Sivakumar, R. (2016). Green supplier selection and order allocation in a low-carbon paper industry: Integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches. Annals of Operations Research, 238(1–2), 243–276.

    Google Scholar 

  • Guo, Z., Liu, H., Zhang, D., & Yang, J. (2017). Green supplier evaluation and selection in apparel manufacturing using a fuzzy multi-criteria decision-making approach. Sustainability, 9(4), 650.

    Google Scholar 

  • Hazen, B. T., Skipper, J. B., Boone, C. A., & Hill, R. R. (2018). Back in business: Operations research in support of big data analytics for operations and supply chain management. Annals of Operations Research, 270(1–2), 201–211.

    Google Scholar 

  • Henke Jr, J. W., Parameswaran, R., & Pisharodi, R. M. (2008). Manufacturer price reduction pressure and supplier relations. Journal of Business & Industrial Marketing, 23(5), 287–300.

    Google Scholar 

  • Heydari, J., & Norouzinasab, Y. (2015). A two-level discount model for coordinating a decentralized supply chain considering stochastic price-sensitive demand. Journal of Industrial Engineering International, 11(4), 531–542.

    Google Scholar 

  • Huang, Y. S., Ho, R. S., & Fang, C. C. (2015). Quantity discount coordination for allocation of purchase orders in supply chains with multiple suppliers. International Journal of Production Research, 53(22), 6653–6671.

    Google Scholar 

  • Huang, Y., Wang, K., Zhang, T., & Pang, C. (2016). Green supply chain coordination with greenhouse gases emissions management: A game-theoretic approach. Journal of Cleaner Production, 112, 2004–2014.

    Google Scholar 

  • Jeon, J., Lee, H., & Park, Y. (2011). Implementing technology roadmapping with supplier selection for semiconductor manufacturing companies. Technology Analysis & Strategic Management, 23(8), 899–918.

    Google Scholar 

  • Ji, P., Ma, X., & Li, G. (2015). Developing green purchasing relationships for the manufacturing industry: An evolutionary game theory perspective. International Journal of Production Economics, 166, 155–162.

    Google Scholar 

  • Kerkkamp, R. B. O., van den Heuvel, W., & Wagelmans, A. P. M. (2018). Two-echelon supply chain coordination under information asymmetry with multiple types. Omega, 76, 137–159.

    Google Scholar 

  • Kim, S. H., & Netessine, S. (2013). Collaborative cost reduction and component procurement under information asymmetry. Management Science, 59(1), 189–206.

    Google Scholar 

  • Kumar, A., Debnath, R. M., Shankar, R., & Prabhu, J. (2014). Analyzing customer preference and measuring relative efficiency in telecom sector: A hybrid fuzzy ahp/dea study. Telematics and Informatics, 32(3), 447–462.

    Google Scholar 

  • Kuo, Tsai, Hsu, Chia-Wei, & Li, Jie-Ying. (2015). Developing a green supplier selection model by using the danp with vikor. Sustainability, 7(2), 1661–1689.

    Google Scholar 

  • Li, W., Jiang, X., Sun, W., Wang, S. H., Liu, C., Zhang, X., et al. (2020). Gingivitis identification via multichannel gray-level co-occurrence matrix and particle swarm optimization neural network. International Journal of Imaging Systems and Technology, 30(2), 401–411.

    Google Scholar 

  • Li, Q., Zhang, Z. J., Rao, W., Xu, W., & Jiang, L. (2019). Green investment decisions in supply chains: A game model with complete information. Information, 10(6), 185.

    Google Scholar 

  • Li, Q., & Zhou, J. (2019). A horizontal capacity reservation game under asymmetric information. International Journal of Production Research, 57(4), 1103–1118.

    Google Scholar 

  • Lin, C. T., Hung, K. P., & Hu, S. H. (2018). A decision-making model for evaluating and selecting suppliers for the sustainable operation and development of enterprises in the aerospace industry. Sustainability, 10(3), 735.

    Google Scholar 

  • Liu, T., Deng, Y., & Chan, F. (2018). Evidential supplier selection based on DEMATEL and game theory. International Journal of Fuzzy Systems, 20(4), 1321–1333.

    Google Scholar 

  • Mohammaditabar, D., Ghodsypour, S. H., & Hafezalkotob, A. (2016). A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs. International Journal of Production Economics, 181, 87–97.

    Google Scholar 

  • Moon, I., Feng, X. H., & Ryu, K. Y. (2015). Channel coordination for multi-stage supply chains with revenue-sharing contracts under budget constraints. International Journal of Production Research, 53(16), 4819–4836.

    Google Scholar 

  • Mousakhani, S., Nazari-Shirkouhi, S., & Bozorgi-Amiri, A. (2017). A novel interval type-2 fuzzy evaluation model based group decision analysis for green supplier selection problems: A case study of battery industry. Journal of Cleaner Production, 168, 205–218.

    Google Scholar 

  • Ning, L., Wang, F., & Li, J. (2016). Urban innovation, regional externalities of foreign direct investment and industrial agglomeration: Evidence from Chinese cities. Research Policy, 45(4), 830–843.

    Google Scholar 

  • Ortiz-de-Mandojana, N., & Bansal, P. (2016). The long-term benefits of organizational resilience through sustainable business practices. Strategic Management Journal, 37(8), 1615–1631.

    Google Scholar 

  • Park, S. C., & Lee, J. H. (2017). Supplier selection and stepwise benchmarking: A new hybrid model using dea and ahp based on cluster analysis. Journal of the Operational Research Society, 69(3), 449–466.

    Google Scholar 

  • Pazhani, S., Ventura, J. A., & Mendoza, A. (2016). A serial inventory system with supplier selection and order quantity allocation considering transportation costs. Applied Mathematical Modelling, 40(1), 612–634.

    Google Scholar 

  • Qiao, A., Choi, S. H., & Wang, X. J. (2019). Lot size optimisation in two-stage manufacturer-supplier production under carbon management constraints. Journal of Cleaner Production, 224, 523–535.

    Google Scholar 

  • Sadigh, A. N., Chaharsooghi, S. K., & Sheikhmohammady, M. (2016). A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 12(1), 337–355.

    Google Scholar 

  • Sahoo, M. M., Patra, K. C., Swain, J. B., & Khatua, K. K. (2017). Evaluation of water quality with application of Bayes’ rule and entropy weight method. European Journal of Environmental and Civil Engineering, 21(6), 730–752.

    Google Scholar 

  • Shen, B., Choi, T. M., & Minner, S. (2019). A review on supply chain contracting with information considerations: Information updating and information asymmetry. International Journal of Production Research, 57(15–16), 4898–4936.

    Google Scholar 

  • Shi, Q., Zhu, J., & Li, Q. (2018). Cooperative evolutionary game and applications in construction supplier tendency. Complexity, 2018, 1–13.

    Google Scholar 

  • Smets, L. P. M., van Oorschot, Kim E., & Langerak, Fred. (2013). Don’t trust trust: A dynamic approach to controlling supplier involvement in new product development. Journal of Product Innovation Management, 30(6), 1145–1158.

    Google Scholar 

  • Song, H., & Gao, X. (2018). Green supply chain game model and analysis under revenue-sharing contract. Journal of Cleaner Production, 170, 183–192.

    Google Scholar 

  • Wang, D., Du, G., Jiao, R. J., Wu, R., Yu, J., & Yang, D. (2016a). A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration. International Journal of Production Economics, 172, 1–18.

    Google Scholar 

  • Wang, K., Huang, Y., & Qin, H. (2016b). A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown. Journal of the Operational Research Society, 67(1), 68–82.

    Google Scholar 

  • Wang, S. H., Muhammad, K., Hong, J., Sangaiah, A. K., & Zhang, Y. D. (2020). Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Computing and Applications, 32(3), 665–680.

    Google Scholar 

  • Wang, J., Yao, S., Lu, X., & Li, Y. (2019). Organic food labeling and advertising: A tripartite game model between one supplier and two heterogeneous manufacturers. Complexity, 2019, 1–14.

    Google Scholar 

  • Xie, W., Zhao, Y., Jiang, Z., & Chow, P. S. (2016). Optimizing product service system by franchise fee contracts under information asymmetry. Annals of Operations Research, 240(2), 709–729.

    Google Scholar 

  • Yazdani, M., Chatterjee, P., Zavadskas, E. K., & Zolfani, S. H. (2017). Integrated QFD-MCDM framework for green supplier selection. Journal of Cleaner Production, 142, 3728–3740.

    Google Scholar 

  • Yin, S., Nishi, T., & Grossmann, I. E. (2015). Optimal quantity discount coordination for supply chain optimization with one manufacturer and multiple suppliers under demand uncertainty. The International Journal of Advanced Manufacturing Technology, 76(5–8), 1173–1184.

    Google Scholar 

  • Zhang, C. T., & Liu, L. P. (2013). Research on coordination mechanism in three-level green supply chain under non-cooperative game. Applied Mathematical Modelling, 37(5), 3369–3379.

    Google Scholar 

  • Zhao, H., & Guo, S. (2014). Selecting green supplier of thermal power equipment by using a hybrid mcdm method for sustainability. Sustainability, 6(1), 217–235.

    Google Scholar 

  • Zhu, W., & He, Y. (2017). Green product design in supply chains under competition. European Journal of Operational Research, 258(1), 165–180.

    Google Scholar 

Download references

Acknowledgements

The study was supported by “Fundamental Research Funds for the Central Universities” (JB190606), “Major Theoretical and Practical Research Projects of Social Science in Shaanxi province” (2019C068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Linguistic scale and entropy weight

Assuming that a group of linguistic variables of TFNs are represented by TFNs = {L, ML, M, MH, H}, the meaning is shown in Fig. 8.

Fig. 8
figure 8

Linguistic scale

With m evaluation criteria and n evaluation objects, the original data matrix A is

$$ A = \left[ {\begin{array}{*{20}l} {a_{11} } \hfill & {a_{12} } \hfill & \ldots \hfill & {a_{1n} } \hfill \\ {a_{21} } \hfill & {a_{22} } \hfill & \ldots \hfill & {a_{2n} } \hfill \\ \vdots \hfill & \vdots \hfill & \vdots \hfill & \vdots \hfill \\ {a_{m1} } \hfill & {a_{m2} } \hfill & \ldots \hfill & {a_{mn} } \hfill \\ \end{array} } \right] $$
(40)

Matrix \( B = (b_{ij})_{m \times n }\) is determined after normalization of raw data matrix A. Where bij is the normalized value of the jth evaluation object in the ith evaluation criterion, \( b_{ij} \in [0,1] \), j = 1, 2, …, n. Moreover, for profitability indicators (positive indicators), there are

$$ b_{ij} = \frac{{a_{ij} - \mathop {\hbox{min} }\limits_{j} \left\{ {a_{ij} } \right\}}}{{\mathop {\hbox{max} }\limits_{j} \left\{ {a_{ij} } \right\} - \mathop {\hbox{min} }\limits_{j} \left\{ {a_{ij} } \right\}}} $$
(41)

For cost indicators (negative indicators), there are

$$ b_{ij} = \frac{{\mathop {\hbox{max} }\limits_{j} \left\{ {a_{ij} } \right\} - a_{ij} }}{{\mathop {\hbox{max} }\limits_{j} \left\{ {a_{ij} } \right\} - \mathop {\hbox{min} }\limits_{j} \left\{ {a_{ij} } \right\}}} $$
(42)

Among the evaluation problems with m evaluation criteria and n evaluation objects, the entropy definition of the ith evaluation criterion is

$$ E_{i} = - k\sum\limits_{j = 1}^{n} {c_{ij} \ln c_{ij} ,\quad i = 1,2, \ldots ,m.} $$
(43)

where

$$ c_{ij} = \frac{{b_{ij} }}{{\sum\limits_{j = 1}^{n} {b_{ij} } }},k = \frac{1}{\ln n}. $$
(44)

After defining the entropy of the ith evaluation criterion, the definition of the entropy weight of the ith evaluation criterion can be obtained.

$$ W_{Ei} = \frac{{1 - E_{i} }}{{m - \sum\limits_{i = 1}^{m} {E_{i} } }} $$
(45)

where

$$ 0 \le W_{Ei} \le 1,\sum\limits_{i = 1}^{m} {W_{Ei} } = 1. $$
(46)

Appendix B: Profits under non-cooperative game

$$ \begin{aligned} \prod\nolimits_{S}^{*} = - F_{1} - P_{U1} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right. \hfill \\ \_\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ +\, bP_{U1} ( - \frac{{\sqrt[3]{{27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} + \sqrt {\left( {27b{\rm O}_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( { - bP_{U1} O_{C1} + aO_{C2} - bP_{U1} O_{C2} } \right)^{3} } }}}}{{3\sqrt[3]{2}S_{C2} }} \hfill \\ \left. { -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \hfill \\ \left( {2\left( { -\, \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ \left. {\left. {\_\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right) \hfill \\ + \left( {\left( {a\left( { -\, \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right. \hfill \\ \_\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ +\, bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ \left. {\_\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right) \hfill \\ \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right. \hfill \\ -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ + bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ -\, \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \hfill \\ \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }} - } \right.} \right. \hfill \\ \end{aligned} $$
$$ \begin{aligned} \left. {\left. {\left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \hfill \\ \left( {2b\left( { -\, \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ -\, \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right) \hfill \\ + \frac{1}{2}\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)S_{C1} \hfill \\ - \left( {O_{C1} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right.} \right. \hfill \\ -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ + bP_{UC1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ \left. { -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \hfill \\ \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ - \left. {\left. {\left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \hfill \\ -\, \left( {\frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ \end{aligned} $$
$$ \begin{aligned} \prod\nolimits_{M}^{*} & = - F_{2} - \frac{1}{2}S_{C2} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad +\, \frac{{c\left( {P^{ - } \left( {\frac{{ - \gamma \theta^{ - } + \gamma \theta - P^{ - } + P_{U2} }}{{2P^{ - } }} + 1} \right) - P_{U2} } \right)\left( {\gamma \left( {\theta - \theta^{ - } } \right) + \frac{1}{2}\left( {\gamma \theta^{ - } - \gamma \theta + P^{ - } - P_{U2} } \right)} \right)}}{{\gamma \left( {\theta - \theta^{ - } } \right)}} \\ & \quad \_\left( {O_{C2} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right.} \right. \\ & \quad -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad + bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad \left. {\left. { -\, \frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \\ & \quad \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \\ & \quad -\, \left. {\left. {\left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \\ & \quad \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad -\, \left( {\left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right. \\ & \quad -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad +\, bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad \left. { - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right) \\ & \quad \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }} - } \right.} \right.} \right. \\ \end{aligned} $$
$$ \begin{aligned} \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ +\, bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ - \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \hfill \\ \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ \left. {\left. {\left. { -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \hfill \\ -\, \left( {2b\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ \left. { -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right) \hfill \\ \end{aligned} $$

Appendix C: Profits under cooperative decision-making

$$ \begin{aligned} \tau_{1} (f) & = \frac{1}{2}\left( { - 2F_{1} + \frac{1}{2}S_{C1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \\ & \quad -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad +\, \frac{1}{2}S_{C2} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad - \,P_{U1} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right. \\ & \quad -\, \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + \\ \end{aligned} $$
$$ \begin{aligned} bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ - \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \hfill \\ \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ \left. {\left. { - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right) \hfill \\ + \frac{{c\left( {P^{ - } \left( {\frac{{ - \gamma \theta^{ - } + \gamma \theta - P^{ - } + P_{UC2} }}{{2P^{ - } }} + 1} \right) - P_{U2} } \right)\left( {\gamma \left( {\theta - \theta^{ - } } \right) + \frac{1}{2}\left( {\gamma \theta^{ - } - \gamma \theta + P^{ - } - P_{U2} } \right)} \right)}}{{\gamma \left( {\theta - \theta^{ - } } \right)}} \hfill \\ + \frac{{c\left( {P^{ - } \left( {\frac{{ - \gamma \theta^{ - } + \gamma \theta - P^{ - } + P_{U1} + P_{U2} }}{{2P^{ - } }} + 1} \right) - P_{U1} - P_{U2} } \right)\left( {\gamma \left( {\theta - \theta^{ - } } \right) + \frac{1}{2}\left( {\gamma \theta^{ - } - \gamma \theta + P^{ - } - P_{U1} - P_{U2} } \right)} \right)}}{{\gamma \left( {\theta - \theta^{ - } } \right)}} \hfill \\ - \left( {O_{C1} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right.} \right. \hfill \\ - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ + bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ - \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \hfill \\ \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \hfill \\ \left. {\left. {\left. { - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \hfill \\ \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ \end{aligned} $$
$$ \begin{aligned} \tau_{2} (f) = \frac{1}{2}\left( { - 2F_{2} - \frac{1}{2}S_{C1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. - \hfill \\ - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ - \frac{1}{2}S_{C2} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \hfill \\ - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \hfill \\ + P_{U1} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }} - } \right.} \right.} \right. \hfill \\ \end{aligned} $$
$$ \begin{aligned} & \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad + bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad - \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \\ & \quad \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \\ & \quad + \left. {\left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right) \\ & \quad + \left( {O_{C1} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right.} \right.} \right. \\ & \quad - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad + bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad - \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \\ & \quad \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \\ & \quad - \left. {\left. {\left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \\ & \quad \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad + \left( {O_{C2} \left( {a - \left( {a\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }} - } \right.} \right.} \right.} \right. \\ \end{aligned} $$
$$ \begin{aligned} & \quad \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad + bP_{U1} \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad - \left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) + bO_{C1} } \right)/ \\ & \quad \left( {2\left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right.} \right. \\ & \quad - \left. {\left. {\left. {\left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right)} \right)} \right)} \right)/ \\ & \quad \left( { - \frac{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}{{3\sqrt[3]{2}S_{C2} }}} \right. \\ & \quad - \left. {\frac{{\sqrt[3]{2}\left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)}}{{\sqrt[3]{{\sqrt {\left( {27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} } \right)^{2} - 108S_{C2}^{3} \left( {aO_{C2} - bO_{C1} P_{U1} - bO_{C2} P_{U1} } \right)^{3} } + 27bO_{C1}^{2} S_{C2}^{2} + 54bO_{C1} O_{C2} S_{C2}^{2} }}}}} \right) \\ & \quad + \frac{{c\left( {P^{ - } \left( {\frac{{ - \gamma \theta^{ - } + \gamma \theta - P^{ - } + P_{U1} + P_{U2} }}{{2P^{ - } }} + 1} \right) - P_{U1} - P_{U2} } \right)\left( {\gamma \left( {\theta - \theta^{ - } } \right) + \frac{1}{2}\left( {\gamma \theta^{ - } - \gamma \theta + P^{ - } - P_{U1} - P_{U2} } \right)} \right)}}{{\gamma \left( {\theta - \theta^{ - } } \right)}} \\ & \quad - \left. {\frac{{c\left( {\gamma \left( {\theta - \theta^{ - } } \right) + \frac{1}{2}\left( {\gamma \theta^{ - } - \gamma \theta + P^{ - } - P_{U2} } \right)} \right)\left( {P^{ - } \left( {\frac{{ - \gamma \theta^{ - } + \gamma \theta - P^{ - } + P_{U2} }}{{2P^{ - } }} + 1} \right) - P_{U2} } \right)}}{{\gamma \left( {\theta - \theta^{ - } } \right)}}} \right) \\ \end{aligned} $$

Appendix D: Pseudocodes of algorithm core process

figure a
figure b
figure c
figure d
figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Luo, S., Mou, J. et al. The antagonism and cohesion of the upstream supply chain under information asymmetry. Ann Oper Res 329, 527–572 (2023). https://doi.org/10.1007/s10479-020-03881-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03881-5

Keywords

Navigation