Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

\(l_1\)-Regularization for multi-period portfolio selection

  • S.I.: BALCOR-2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this work we present a model for the solution of the multi-period portfolio selection problem. The model is based on a time consistent dynamic risk measure. We apply \(l_1\)-regularization to stabilize the solution process and to obtain sparse solutions, which allow one to reduce holding costs. The core problem is a nonsmooth optimization one, with equality constraints. We present an iterative procedure based on a modified Bregman iteration, that adaptively sets the value of the regularization parameter in order to produce solutions with desired financial properties. We validate the approach showing results of tests performed on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Data available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#BookEquity.

References

  • AitSahlia, F., Sheu, Y., & Pardalos, P. M. (2008). Optimal execution of time-constrained portfolio transactions (pp. 95–102). Berlin: Springer.

    Google Scholar 

  • Antonelli, L., & De Simone, V. (2018). Comparison of minimization methods for nonsmooth image segmentation. Communications in Applied and Industrial Mathematics, 9, 68–96. https://doi.org/10.1017/CBO9780511804458.003.

    Article  Google Scholar 

  • Basak, S., & Chabakauri, G. (2010). Dynamic mean-variance asset allocation. The Review of Financial Studies, 23(8), 2970–3016.

    Article  Google Scholar 

  • Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Science, 2, 183–202.

    Article  Google Scholar 

  • Bregman, L. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.

    Article  Google Scholar 

  • Brodie, J., Daubechies, I., De Mol, C., Giannone, D., & Loris, I. (2009). Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences, 106(30), 12267–12272.

    Article  Google Scholar 

  • Carrasco, M., & Noumon, N. (2012). Optimal portfolio selection using regularization, Working paper, University of Montreal.

  • Chen, Z., Consigli, G., Liu, J., Li, G., Fu, T., & Hu, Q. (2017). Multi-period risk measures and optimal investment policies (pp. 1–34). Cham: Springer.

    Google Scholar 

  • Chen, Z., Li, G., & Guo, J. (2013). Optimal investment policy in the time consistent mean-variance formulation. Insurance: Mathematics and Economics, 52(2), 145–156.

    Google Scholar 

  • Corsaro, S., & De Simone, V. (2019). Adaptive \(l_1\)-regularization for short-selling control in portfolio selection. Computational Optimization and Applications, 72(2), 457–478.

    Google Scholar 

  • Corsaro, S., De Simone, V., Marino, Z., & Perla, F. (2018). Numerical solution of the regularized portfolio selection problem (pp. 249–252). Berlin: Springer. https://doi.org/10.1007/978-3-319-89824-7_45.

    Book  Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.

    Article  Google Scholar 

  • DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1-n portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953.

    Article  Google Scholar 

  • Goldstein, T., & Osher, S. (2009). The split bregman for l1-regularization problems. SIAM Journal of Imaging Science, 2(2), 323–343.

    Article  Google Scholar 

  • Ho, M., Sun, Z., & Xin, J. (2015). Weighted elastic net penalized mean-variance portfolio design and computation. SIAM Journal on Financial Mathematics, 6(1), 1220–1244.

    Article  Google Scholar 

  • Li, D., & Ng, W. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance, 10(3), 387–406.

    Article  Google Scholar 

  • Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and bregman iterative methods for matrix rank minimization. Mathematical Programming, 128(1), 321–353.

    Article  Google Scholar 

  • O’Donoghue, B., Stathopoulos, G., & Boyd, S. (2013). A splitting method for optimal control. IEEE Transactions on Control Systems Technology, 21(6), 2432–2442.

    Article  Google Scholar 

  • Osher, S., Burger, M., Goldfarb, D., Xu, J., & Yin, W. (2005). An iterative regularization method for total variation-based image restoration. SIAM Journal on Multiscale Modeling and Simulation, 4(2), 460–489.

    Article  Google Scholar 

  • Pardalos, P. M. (1997). Optimization techniques for portfolio selection. In C. Zopounidis (Ed.), New operational approaches for financial modelling (pp. 19–33). Heidelberg: Physica-Verlag HD.

    Chapter  Google Scholar 

  • Pardalos, P. M., Sandström, M., & Zopounidis, C. (1994). On the use of optimization models for portfolio selection: A review and some computational results. Computational Economics, 7(4), 227–244.

    Article  Google Scholar 

  • Wang, J., & Forsyth, P. A. (2012). Comparison of mean variance like strategies for optimal asset allocation problems. International Journal of Theoretical and Applied Finance (IJTAF), 15(02), 1–32.

    Google Scholar 

  • Yen, Y., & Yen, T. J. (2014). Solving norm constrained portfolio optimization via coordinate-wise descent algorithms. Computational Statistics and Data Analysis, 76, 737–759.

    Article  Google Scholar 

  • Yin, W., Osher, S., Goldfarb, D., & Darbon, J. (2008). Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal of Imaging Science, 1(1), 143–168.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Research Grant of University of Naples “Parthenope”, DR no. 953, November 28th, 2016, and by INdAM-GNCS, under Project 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Perla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsaro, S., De Simone, V., Marino, Z. et al. \(l_1\)-Regularization for multi-period portfolio selection. Ann Oper Res 294, 75–86 (2020). https://doi.org/10.1007/s10479-019-03308-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03308-w

Keywords

Mathematics Subject Classification

Navigation