Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Peer-judgment risk minimization using DEA cross-evaluation with an application in fishery

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

One of the shortcomings in the standard data envelopment analysis (DEA) self-evaluation models is the flexibility of choosing favorable DEA weights on inputs and outputs. This study uses the potential of DEA cross-efficiency evaluation and proposes a new mean–variance goal programming model for minimizing the risk of changing DEA weights for identification of high performed decision making units. The applicability of the proposed method in this paper is demonstrated through an application in Oman fishery, to address peer-judgment risk in fisheries. The suggested model also provides a list of fishers with maximum cross-efficiency scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Marshudi, A. S., & Kotagama, H. (2006). Socio-economic structure and performance of traditional fishermen in the sultanate of Oman. Marine Resource Economics, 21(2), 221–230.

    Article  Google Scholar 

  • Amin, G. R., Emrouznejad, A., & Rezaei, S. (2011). Some clarifications on the DEA clustering approach. European Journal of Operational Research, 215, 498–501.

    Article  Google Scholar 

  • Bahari, A. R., & Emrouznejad, A. (2014). Influential DMUs and outlier detection in data envelopment analysis with an application to health care. Annals of Operations Research, 223(1), 95–108.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Banker, R. D., & Podinovski, V. V. (2017). Novel theory and methodology developments in data envelopment analysis. Annals of Operations Research, 250(1), 1–3.

    Article  Google Scholar 

  • Castilla-Espino, D., García-del-Hoyo, J. J., Metreveli, M., & Bilashvili, K. (2014). Fishing capacity of the southeastern Black Sea anchovy fishery. Journal of Marine Systems, 135, 160–169.

    Article  Google Scholar 

  • Ceyhan, V., & Gene, H. (2014). Productive efficiency of commercial fishing: evidence from the Samsun Province of Black Sea, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 14, 309–320.

    Google Scholar 

  • Charles, A. T. (1998). Living with uncertainty in Fisheries: Analytical methods, management priorities and the Canadian ground fishery experience. Fisheries Research, 37, 37–50.

    Article  Google Scholar 

  • Charles, A. T. (2001). Sustainable fishery systems. Oxford: Blackwell Science Ltd.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Chen, L., Gupta, R., Mukherjee, Z., & Wanke, P. (2016). Technical efficiency of Connecticut Long Island Sound lobster fishery: A nonparametric approach to aggregate frontier analysis. Natural Hazards, 81(3), 1533–1548.

    Article  Google Scholar 

  • Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. Berlin: Springer.

    Google Scholar 

  • Collier, T. C., Mamula, A., & Ruggiero, J. (2014). Estimation of multi-output production functions in commercial fisheries. Omega, 42(1), 157–165.

    Article  Google Scholar 

  • Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2015). A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Computers & Industrial Engineering, 79, 103–114.

    Article  Google Scholar 

  • Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2016). A stochastic cross-efficiency data envelopment analysis approach for supplier selection under uncertainty. International Transactions in Operational Research, 23(4), 725–748.

    Article  Google Scholar 

  • Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: derivations, meanings and uses. Journal of the Operations Research Society, 45, 567–578.

    Article  Google Scholar 

  • Du, J., Cook, W. D., Liang, L., & Zhu, J. (2014). Fixed cost and resource allocation based on DEA cross-efficiency. European Journal of Operational Research, 235(1), 206–214.

    Article  Google Scholar 

  • Dupont, D. P., Grafton, R. Q., Kirkley, J., & Squires, D. (2002). Capacity utilization measures and excess capacity in multi-product privatized fisheries. Resource and Energy Economics, 24(3), 193–210.

    Article  Google Scholar 

  • Duy, N. N., & Flaaten, O. (2016). Efficiency analysis of fisheries using stock proxies. Fisheries Research, 181, 102–113.

    Article  Google Scholar 

  • Emrouznejad, A. (2014). Advances in data envelopment analysis. Annals of Operations Research, 214(1), 1–4.

    Article  Google Scholar 

  • Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978-2016. Socio-Economic Planning Sciences, 61(1), 4–8.

    Article  Google Scholar 

  • Francis, R. I. C., & Shotton, R. (1997). Risk in fisheries management: a review. Canadian Journal of Fisheries and Aquatic Sciences, 54, 1699–1715.

    Google Scholar 

  • Fulton, E. A., Smith, A. D., Smith, D. C., & van Putten, I. E. (2011). Human behavior: the key source of uncertainty in fisheries management. Fish and Fisheries, 12(1), 2–17.

    Article  Google Scholar 

  • González-García, S., Villanueva-Rey, P., Belo, S., Vázquez-Rowe, I., Moreira, M. T., Feijoo, G., et al. (2015). Cross-vessel eco-efficiency analysis. A case study for purse seining fishing from North Portugal targeting European pilchard. The. International Journal of Life Cycle Assessment, 20(7), 1019–1032.

    Article  Google Scholar 

  • Guyader, O., & Daurès, F. (2005). Capacity and scale inefficiency: Application of data envelopment analysis in the case of the French Seaweed fleet. Marine Resource Economics, 20(4), 347–365.

    Article  Google Scholar 

  • Herrero, I. (2005). Different approaches to efficiency analysis. An application to the Spanish Trawl fleet operating in Moroccan waters. European Journal of Operational Research, 167(1), 257–271.

    Article  Google Scholar 

  • Herrero, I., Pascoe, S., & Mardle, S. (2006). Mix efficiency in a multi-species fishery. Journal of Productivity Analysis, 25(3), 231–241.

    Article  Google Scholar 

  • Holland, D. S., & Lee, S. T. (2002). Impacts of random noise and specification on estimates of capacity derived from data envelopment analysis. European Journal of Operational Research, 137(1), 10–21.

    Article  Google Scholar 

  • Iliyasu, A., Mohamed, Z. A., & Terano, R. (2016). Comparative analysis of technical efficiency for different production culture systems and species of freshwater aquaculture in Peninsular Malaysia. Aquaculture Reports, 3, 51–57.

    Article  Google Scholar 

  • Kirkley, J. E., Squires, D., Alam, M. F., & Ishak, H. O. (2003). Excess capacity and asymmetric information in developing country fisheries: the Malaysian purse seine fishery. American Journal of Agricultural Economics, 85(3), 647–662.

    Article  Google Scholar 

  • Kleine, A., Dellnitz, A., & Rödder, W. (2013). Sensitivity analysis of BCC efficiency in DEA with application to European health services. In D. Huisman, I. Louwerse, & A. P. Wagelmans (Eds.), Operations research proceedings (pp. 243–248). Cham: Springer.

    Google Scholar 

  • Kleine, A., Rödder, W., & Dellnitz, A. (2016). Returns to scale revisited—towards cross-RTS. In H. Ahn et al. (Eds.), Nachhaltiges Entscheiden: Beiträge zum multiperspektivischen Performancemanagement von Wertschöpfungsprozessen, Festschrift zum 65. Geburtstag von Harald Dyckhoff (pp. 385–404). Wiesbaden: Springer.

    Chapter  Google Scholar 

  • Lee, S. G., & Rahimi Midani, A. (2015). Productivity change under the vessel buyback program in Korean fisheries. Fisheries Science, 81(1), 21–28.

    Article  Google Scholar 

  • Lim, S., Oh, K. W., & Zhu, J. (2014). Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. European Journal of Operational Research, 236, 361–368.

    Article  Google Scholar 

  • Liu, S. T. (2017). A DEA ranking method based on cross-efficiency intervals and signal-to-noise ratio. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2562-8. article in press.

    Article  Google Scholar 

  • Liu, J. S., Lu, L. Y., & Lu, W. M. (2016). Research fronts in data envelopment analysis. Omega, 58, 33–45.

    Article  Google Scholar 

  • Liu, W., Wang, Y. M., & Lv, S. (2017). An aggressive game cross-efficiency evaluation in data envelopment analysis. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2524-1. (article in press).

    Article  Google Scholar 

  • Ludwig, D., Hilborn, R., & Walters, C. (1993). Uncertainty, resource exploitation, and conservation: Lessons from history. Science, 260(17), 36.

    Google Scholar 

  • Madau, F. A., Idda, L., & Pulina, P. (2009). Capacity and economic efficiency in small-scale fisheries: Evidence from the Mediterranean Sea. Marine Policy, 33(5), 860–867.

    Article  Google Scholar 

  • Mahdiloo, M., Saen, R. F., & Lee, K. H. (2015). Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis. International Journal of Production Economics, 168, 279–289.

    Article  Google Scholar 

  • Ondrich, J., & Ruggiero, J. (2002). Outlier detection in data envelopment analysis: An analysis of jackknifing. Journal of the Operational Research Society, 53, 342–346.

    Article  Google Scholar 

  • Oukil, A., & Amin, G. R. (2015). Maximum appreciative cross-efficiency in DEA: A new ranking method. Computers & Industrial Engineering, 81, 14–21.

    Article  Google Scholar 

  • Pascoe, S., & Tingley, D. (2006). Economic capacity estimation in fisheries: A non-parametric ray approach. Resource and Energy Economics, 28(2), 124–138.

    Article  Google Scholar 

  • Pham, T. D. T., Huang, H. W., & Chuang, C. T. (2014). Finding a balance between economic performance and capacity efficiency for sustainable fisheries: Case of the Da Nang gillnet fishery, Vietnam. Marine Policy, 44, 287–294.

    Article  Google Scholar 

  • Rödder, W., & Reucher, E. (2011). A consensual peer-based DEA-model with optimized cross-efficiencies—input allocation instead of radial reduction. European Journal of Operational Research, 212(1), 148–154.

    Article  Google Scholar 

  • Rödder, W., & Reucher, E. (2012). Advanced X-efficiencies for CCR- and BCC-models—towards peer-based DEA controlling. European Journal of Operational Research, 219(2), 467–476.

    Article  Google Scholar 

  • Rust, S., Yamazaki, S., Jennings, S., Emery, T., & Gardner, C. (2017). Excess capacity and efficiency in the quota managed Tasmanian Rock Lobster Fishery. Marine Policy, 76(1), 55–62.

    Article  Google Scholar 

  • Salas, S., & Gaertner, D. (2004). The behavioural dynamics of fishers: Management implications. Fish and Fisheries, 5(2), 153–167.

    Article  Google Scholar 

  • Tidd, A. N., Reid, C., Pilling, G. M., & Harley, S. J. (2016). Estimating productivity, technical and efficiency changes in the Western Pacific purse-seine fleets. ICES Journal of Marine Science: Journal du Conseil, 73(4), 1226–1234.

    Article  Google Scholar 

  • Tingley, D., & Pascoe, S. (2005). Factors affecting capacity utilisation in english channel fisheries. Journal of Agricultural Economics, 56(2), 287–305.

    Article  Google Scholar 

  • Tingley, D., Pascoe, S., & Coglan, L. (2005). Factors affecting technical efficiency in fisheries: Stochastic production frontier versus data envelopment analysis approaches. Fisheries Research, 73(3), 363–376.

    Article  Google Scholar 

  • Tingley, D., Pascoe, S., & Mardle, S. (2003). Estimating capacity utilisation in multi-purpose, multi-metier fisheries. Fisheries Research, 63(1), 121–134.

    Article  Google Scholar 

  • Tran, N. A., Shively, G., & Preckel, P. (2010). A new method for detecting outliers in data envelopment analysis. Applied Economic Letters, 17(4), 313–316.

    Article  Google Scholar 

  • Tsitsika, E. V., Maravelias, C. D., Wattage, P., & Haralabous, J. (2008). Fishing capacity and capacity utilization of purse seiners using data envelopment analysis. Fisheries Science, 74(4), 730–735.

    Article  Google Scholar 

  • Vázquez-Rowe, I., & Tyedmers, P. (2013). Identifying the importance of the “skipper effect” within sources of measured inefficiency in fisheries through data envelopment analysis (DEA). Marine Policy, 38, 387–396.

    Article  Google Scholar 

  • Vestergaard, N., Squires, D., & Kirkley, J. (2003). Measuring capacity and capacity utilization in fisheries: The case of the Danish Gill-net fleet. Fisheries Research, 60(2), 357–368.

    Article  Google Scholar 

  • Walden, J. B. (2006). Estimating vessel efficiency using a bootstrapped data envelopment analysis model. Marine Resource Economics, 21(2), 181–192.

    Article  Google Scholar 

  • Wu, L., & Liang, L. (2012). A multiple criteria ranking method based on game cross-evaluation approach. Annals of Operations Research, 197(1), 191–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam R. Amin.

Appendix 1

Appendix 1

See Table 3.

Table 3 Data set and DEA scores for 97 fishers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Siyabi, M., Amin, G.R., Bose, S. et al. Peer-judgment risk minimization using DEA cross-evaluation with an application in fishery. Ann Oper Res 274, 39–55 (2019). https://doi.org/10.1007/s10479-018-2858-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2858-3

Keywords

Navigation