Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effect of two-echelon trade credit on pricing-inventory policy of non-instantaneous deteriorating products with probabilistic demand and deterioration functions

  • S.I.: Innovative Supply Chain Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Usually, the profit of companies will increase if they employ trade credit financing policy to encourage customer to purchase more. This paper develops a model for pricing and inventory control of non-instantaneous deteriorating items under two-echelon trade credit in which the vendor provides a credit period to the retailer and the retailer in turn offers a delay in payment to his/her customer. The price-dependent probabilistic demand function and partially backlogged shortages are adopted. Also, deterioration is shown by three different probability distribution function including (1) uniform distribution, (2) triangular distribution, and (3) beta distribution. The theoretical results are designed to determine the optimal selling price and the optimal inventory control variables so that the retailer’s total profit is maximized. Also, the necessary and sufficient conditions to prove the existence and uniqueness of the optimal solution are provided. Moreover, an algorithm is extended to describe the solution procedure. Numerical example, sensitivity analysis, and a simulation approach are presented to illustrate the performance of the algorithm and the theoretical results. Several managerial insights are also driven from computational results. The results indicate that the retailer’s total profit increases by considering the non-instantaneous deteriorating phenomenon and the trade credit policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad, P. L. (1996). Optimal pricing and lot-sizing under conditions of perishability and partial backordering. Management Science, 42(8), 1093–1104.

    Article  Google Scholar 

  • Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering. Computers & Operations Research, 28(1), 53–65.

    Article  Google Scholar 

  • Abdelsalam, H. M., & Elassal, M. M. (2014). Joint economic lot sizing problem for a three—Layer supply chain with stochastic demand. International Journal of Production Economics, 155, 272–283.

    Article  Google Scholar 

  • Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275–284.

    Article  Google Scholar 

  • Chang, C.-T. (2004). An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity. International journal of production economics, 88(3), 307–316.

    Article  Google Scholar 

  • Chang, C.-T., Teng, J.-T., & Goyal, S. K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62–68.

    Article  Google Scholar 

  • Chang, H.-J., Hung, C.-H., & Dye, C.-Y. (2001). An inventory model for deteriorating items with linear trend demand under the condition of permissible delay in payments. Production Planning & Control, 12(3), 274–282.

    Article  Google Scholar 

  • Chang, H.-J., Teng, J.-T., Ouyang, L.-Y., & Dye, C.-Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research, 168(1), 51–64.

    Article  Google Scholar 

  • Chen, J.-M., & Chen, T.-H. (2007). The profit-maximization model for a multi-item distribution channel. Transportation Research Part E: Logistics and Transportation Review, 43(4), 338–354.

    Article  Google Scholar 

  • Chen, X., & Simchi-Levi, D. (2004). Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case. Operations Research, 52(6), 887–896.

    Article  Google Scholar 

  • Chung, K.-J., Cárdenas-Barrón, L. E., & Ting, P.-S. (2014). An inventory model with non-instantaneous receipt and exponentially deteriorating items for an integrated three layer supply chain system under two levels of trade credit. International Journal of Production Economics, 155, 310–317.

    Article  Google Scholar 

  • Chung, K.-J., & Huang, T.-S. (2007). The optimal retailer’s ordering policies for deteriorating items with limited storage capacity under trade credit financing. International Journal of Production Economics, 106(1), 127–145.

    Article  Google Scholar 

  • Datta, T., & Pal, A. (1988). Order level inventory system with power demand pattern for items with variable rate of deterioration. Indian Journal of Pure and Applied Mathematics, 19(11), 1043–1053.

    Google Scholar 

  • Dolan, R. J., & Simon, H. (1996). Power pricing: How managing price transforms the bottom line. New York: Free Press.

    Google Scholar 

  • Dye, C.-Y. (2007). Joint pricing and ordering policy for a deteriorating inventory with partial backlogging. Omega, 35(2), 184–189.

    Article  Google Scholar 

  • Dye, C.-Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872–880.

    Article  Google Scholar 

  • Fattahi, M., Mahootchi, M., Govindan, K., & Husseini, S. M. M. (2015a). Dynamic supply chain network design with capacity planning and multi-period pricing. Transportation Research Part E: Logistics and Transportation Review, 81, 169–202.

    Article  Google Scholar 

  • Fattahi, M., Mahootchi, M., Moattar Husseini, S., Keyvanshokooh, E., & Alborzi, F. (2015b). Investigating replenishment policies for centralised and decentralised supply chains using stochastic programming approach. International Journal of Production Research, 53(1), 41–69.

    Article  Google Scholar 

  • Federgruen, A., & Heching, A. (1999). Combined pricing and inventory control under uncertainty. Operations Research, 47(3), 454–475.

    Article  Google Scholar 

  • Geetha, K. & Udayakumar, R. (2015). Optimal lot sizing policy for non-instantaneous deteriorating items with price and advertisement dependent demand under partial backlogging. International Journal of Applied and Computational Mathematics, 1–23. doi:10.1007/s40819-015-0053-7.

  • Geetha, K., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics, 233(10), 2492–2505.

    Article  Google Scholar 

  • Ghare, P., & Schrader, G. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238–243.

    Google Scholar 

  • Ghoreishi, M., Mirzazadeh, A., & Weber, G.-W. (2014). Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns. Optimization, 63(12), 1785–1804.

    Article  Google Scholar 

  • Govindan, K. (2015). The optimal replenishment policy for time-varying stochastic demand under vendor managed inventory. European Journal of Operational Research, 242(2), 402–423.

    Article  Google Scholar 

  • Govindan, K., Fattahi, M. (2015). Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain. International Journal of Production Economics. Accepted Manusrctipt. doi:10.1016/j.ijpe.2015.09.033.

  • Goyal, S., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1–16.

    Article  Google Scholar 

  • Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(1), 335–338.

    Article  Google Scholar 

  • Gupta, K. K., Sharma, A., Singh, P. R., & Malik, A. (2013). Optimal ordering policy for stock-dependent demand inventory model with non-instantaneous deteriorating items. International Journal of Soft Computing and Engineering (IJSCE), 3(1), 2231–2307.

    Google Scholar 

  • Haley, C. W., & Higgins, R. C. (1973). Inventory policy and trade credit financing. Management Science, 20(4–part–i), 464–471.

    Article  Google Scholar 

  • Hariga, M. (1996). Optimal EOQ models for deteriorating items with time-varying demand. Journal of the Operational Research Society, 47(10), 1228–1246.

    Article  Google Scholar 

  • Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54(9), 1011–1015.

    Article  Google Scholar 

  • Hwang, H., & Shinn, S. W. (1997). Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539–547.

    Article  Google Scholar 

  • Jaber, M., Bonney, M., Rosen, M., & Moualek, I. (2009). Entropic order quantity (EnOQ) model for deteriorating items. Applied Mathematical Modelling, 33(1), 564–578.

    Article  Google Scholar 

  • Kapoor, S. (2014). An inventory model for non-instantaneous deteriorating products with price and time dependent demand. Mathematical Theory and Modeling, 4(10), 160–168.

    Google Scholar 

  • Liao, H.-C., Tsai, C.-H., & Su, C.-T. (2000). An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63(2), 207–214.

    Article  Google Scholar 

  • Liao, J.-J., Chung, K.-J., & Huang, K.-N. (2013). A deterministic inventory model for deteriorating items with two warehouses and trade credit in a supply chain system. International Journal of Production Economics, 146(2), 557–565.

    Article  Google Scholar 

  • Maihami, R., & Abadi, I. N. K. (2012). Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Mathematical and Computer Modelling, 55(5–6), 1722–1733.

    Article  Google Scholar 

  • Maihami, R., & Karimi, B. (2014). Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts. Computers & Operations Research, 51, 302–312.

    Article  Google Scholar 

  • Maihami, R., & Nakhai Kamalabadi, I. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116–122.

    Article  Google Scholar 

  • Min, J., Zhou, Y.-W., & Zhao, J. (2010). An inventory model for deteriorating items under stock-dependent demand and two-level trade credit. Applied Mathematical Modelling, 34(11), 3273–3285.

    Article  Google Scholar 

  • Ouyang, L.-Y., Wu, K.-S., & Yang, C.-T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering, 51(4), 637–651.

    Article  Google Scholar 

  • Pahl, J., & Voß, S. (2014). Integrating deterioration and lifetime constraints in production and supply chain planning: A survey. European Journal of Operational Research, 238(3), 654–674.

    Article  Google Scholar 

  • Palanivel, M., & Uthayakumar, R. (2015). Finite horizon EOQ model for non-instantaneous deteriorating items with price and advertisement dependent demand and partial backlogging under inflation. International Journal of Systems Science, 46(10), 1762–1773.

    Article  Google Scholar 

  • Pang, Z. (2011). Optimal dynamic pricing and inventory control with stock deterioration and partial backordering. Operations Research Letters, 39(5), 375–379.

    Article  Google Scholar 

  • Petruzzi, N. C., & Dada, M. (1999). Pricing and the newsvendor problem: A review with extensions. Operations Research, 47(2), 183–194.

    Article  Google Scholar 

  • Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 6(2), 159–162.

    Article  Google Scholar 

  • Sarkar, B. (2012). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55(3), 367–377.

    Article  Google Scholar 

  • Sarkar, B. (2013). A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Applied Mathematical Modelling, 37(5), 3138–3151.

    Article  Google Scholar 

  • Sarker, B. R., Jamal, A., & Wang, S. (2000). Supply chain models for perishable products under inflation and permissible delay in payment. Computers & Operations Research, 27(1), 59–75.

    Article  Google Scholar 

  • Shah, N. H., Soni, H. N., & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421–430.

    Article  Google Scholar 

  • Shah, Y. (1977). An order-level lot-size inventory model for deteriorating items. AIIE Transactions, 9(1), 108–112.

    Article  Google Scholar 

  • Singh, S., & Rathore, H. (2015). Reverse logistic model for deteriorating items with non-instantaneous deterioration and learning effect. Information systems design and intelligent applications. Berlin: Springer.

    Google Scholar 

  • Skouri, K., & Papachristos, S. (2003). Four inventory models for deteriorating items with time varying demand and partial backlogging: A cost comparison. Optimal Control Applications and Methods, 24(6), 315–330.

    Article  Google Scholar 

  • Soni, H. N., & Patel, K. A. (2012). Optimal strategy for an integrated inventory system involving variable production and defective items under retailer partial trade credit policy. Decision Support Systems, 54(1), 235–247.

    Article  Google Scholar 

  • Tat, R., Taleizadeh, A. A., & Esmaeili, M. (2015). Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system. International Journal of Systems Science, 46(7), 1257–1268.

    Article  Google Scholar 

  • Tayal, S., Singh, S., Sharma, R., & Singh, A. P. (2015). An EPQ model for non-instantaneous deteriorating item with time dependent holding cost and exponential demand rate. International Journal of Operational Research, 23(2), 145–162.

    Article  Google Scholar 

  • Teng, J.-T., Chang, C.-T., & Goyal, S. K. (2005). Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics, 97(2), 121–129.

    Article  Google Scholar 

  • Thangam, A. (2012). Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment scheme and two-echelon trade credits. International Journal of Production Economics, 139(2), 459–472.

    Article  Google Scholar 

  • Tsao, Y.-C. (2016). Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments. International Journal of Systems Science, 47(3), 572–585.

    Article  Google Scholar 

  • Tsao, Y.-C., & Sheen, G.-J. (2008). Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments. Computers & Operations Research, 35(11), 3562–3580.

    Article  Google Scholar 

  • Tyagi, A. P., Pandey, R. K., & Singh, S. (2014). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and variable holding cost. International Journal of Operational Research, 21(4), 466–488.

    Article  Google Scholar 

  • Udayakumar, R., & Geetha, K. (2014). Optimal replenishment policy for items with inflation rate and time dependent demand with salvage value. Artificial Intelligent Systems and Machine Learning, 6(5), 193–197.

    Google Scholar 

  • Urban, T. L. (2012). An extension of inventory models incorporating financing agreements with both suppliers and customers. Applied Mathematical Modelling, 36(12), 6323–6330.

    Article  Google Scholar 

  • Valliathal, M., & Uthayakumar, R. (2011). Optimal pricing and replenishment policies of an EOQ model for non-instantaneous deteriorating items with shortages. The International Journal of Advanced Manufacturing Technology, 54(1–4), 361–371.

    Article  Google Scholar 

  • Valliathal, M., & Uthayakumar, R. (2013). Designing and computing optimal policies on a production model for non-instantaneous deteriorating items with shortages. International Journal of Production Research, 51(1), 215–229.

    Article  Google Scholar 

  • Wang, Y., Zhang, J., & Tang, W. (2013). Dynamic pricing for non-instantaneous deteriorating items. Journal of Intelligent Manufacturing, 26(4), 1–12.

    Google Scholar 

  • Wee, H.-M. (1993). Economic production lot size model for deteriorating items with partial back-ordering. Computers & Industrial Engineering, 24(3), 449–458.

    Article  Google Scholar 

  • Wu, K.-S., Ouyang, L.-Y., & Yang, C.-T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369–384.

    Article  Google Scholar 

  • Zhu, S. X. (2012). Joint pricing and inventory replenishment decisions with returns and expediting. European Journal of Operational Research, 216(1), 105–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Karimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. We did not use any financial or non-financial source to prepare the manuscript. Also, the ethic responsibility of authors is considered.

Research involving Human Participants and/or Animals

Research did not involve any human participants or animals.

Informed consent

Human participants or animals did not involve in the research. Also, all co-authors consent to submit the paper.

Appendices

Appendix 1: Proof of Theorem 1

Proof of part (a): We show that \(F({{t_{1}}})\) is a strictly decreasing function in \({{t_{1}}}{\in }\left[ t_{d},t_{1}^{b} \right) \) and \(\hbox {lim}_{t_{1}\rightarrow t_{1}^{b}}{F\left( {{t_{1}}} \right) {=-\infty }}\). Thus, if \({\Phi }\left( p \right) {\equiv }F\left( t_{d} \right) {\ge 0}\), the intermediate value theorem implies that there exists a unique value of \(\hbox {t}_{1}\) (\(\hbox {t}_{1}^{{*}})\) such that \(F\left( \hbox {t}_{1}^{{*}} \right) =0\). Solving Eq. (24), the unique value \(\hbox {t}_{1}^{{*}}\) is calculated. When the value of \(\hbox {t}_{1}^{{*}}\) is identified, solving Eq. (23), the value of T (\(T^{*})\) is computed.

Proof of part (b): If \({\Phi }\left( p \right) \equiv F\left( t_{d} \right) <0\), then \(F\left( {{t_{1}}} \right) \) is a strictly decreasing function of \({{t_{1}}}\in \left[ t_{d},t_{1}^{b} \right) \). So, for all \({{t_{1}}}\in \left[ t_{d},t_{1}^{b} \right) \), \(F\left( {{t_{1}}} \right) <0\). Therefore, we cannot find a value of \({{t_{1}}}\in \left[ t_{d},t_{1}^{b} \right) \) such that \(F\left( {{t_{1}}} \right) =0\).

Appendix 2: Proof of Theorem 2

Proof of part (a): Let \(\left( {{t_{1}}},T \right) =(t_{1}^{*},T^{*})\) be the solution of Eqs. (21) and (22). We have

$$\begin{aligned}&{\frac{\partial ^{2}{\textit{TP}}_{1}\left( p,{{t_{1}}},T\right) }{\partial t_{1}^{2}}|}_{\left( t_{1}^{*},T^{*}\right) }\\&\quad =\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }{T^{*}}\left\{ \frac{{-\updelta }\left( {\hbox {p}}-{\hbox {c}}+{\hbox {M}} \right) }{\left[ {1+\updelta }\left( T^{*}-t_{1}^{*} \right) \right] ^{2}}-\hbox {N}\hbox {e}^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( t_{1}^{*}-t_{d} \right) }-ce^{\left( {t_{1}^{*}}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }I_{p} \right\} <O\\&{\frac{\partial ^{2}{\textit{TP}}_{1}\left( p,{{t_{1}}},T\right) }{\partial T^{2}}|}_{\left( t_{1}^{*},T^{*}\right) }=\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }{T^{*}}\nonumber \\&\quad \times \left( \frac{{-\updelta }\left( {\hbox {p}}-{\hbox {c}}+{\hbox {M}} \right) }{\left[ {1+\updelta }\left( T^{*}-t_{1}^{*} \right) \right] ^{2}}-\frac{2\left( -\frac{1}{2}\hbox {I}_{e}p\left( Y^{2}-Z^{2} \right) +\frac{c\hbox {I}_{p}\left( -t_{1}^{*}+Y-\frac{1-e^{\left( t_{1}^{*}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) }{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) }{T^{{*}^{2}}}\right) <0\\&{\frac{\partial ^{2}{\textit{TP}}_{1}\left( p,{{t_{1}}},T\right) }{\partial T\partial {{t_{1}}}}|}_{\left( t_{1}^{*},T^{{*}}\right) }\\&\quad =\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }{T^{{*}}}\left\{ \frac{{\updelta }\left( {\hbox {p}}-{\hbox {c}}+{\hbox {M}} \right) }{\left[ {1+\updelta }\left( T^{{*}}-t_{1}^{*} \right) \right] ^{2}}+\frac{c\left( -1+e^{\left( t_{1}^{*}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) \hbox {I}_{p}}{T^{{*}}\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) } \right\} \end{aligned}$$

Therefore, the determinant of the Hessian matrix is

$$\begin{aligned}&{\frac{\partial ^{2}TP\left( p,{{t_{1}}},T\right) }{\partial t_{1}^{2}}|}_{\left( t_{1}^{*},T^{*}\right) }\times {\frac{\partial ^{2}{\textit{TP}}_{1}\left( t_{1,}T,p \right) }{\partial T^{2}}|}_{\left( t_{1}^{*},T^{*}\right) }-{\left[ {\frac{\partial ^{2}{\textit{TP}}_{1}\left( t_{1,}T,p \right) }{\partial T\partial t_{1,}}|}_{\left( t_{1}^{*},T^{*}\right) }\right] }^{2}\\&\quad =\left( \frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }{T^{*}} \right) ^{2}\left( \left( {\left( \frac{\left( -c+M+p\right) \delta }{{\left( 1+T^{*}\delta -t_{1}^{*}\delta \right) }^{2}}+\frac{c\left( -1+e^{\left( t_{1}^{*}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) \hbox {I}_{p}}{T^{*}\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) }^{2}\right. \right. \\&\quad \quad +\left( -ce^{\left( t_{1}^{*}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\hbox {I}_{p}-e^{\left( t_{1}^{*}-\hbox {td}\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }N-\frac{\left( -c+M+p\right) \delta }{{\left( 1+T^{*}\delta -t_{1}^{*}\delta \right) }^{2}}\right) \left( -\frac{\left( -c+M+p\right) \delta }{{\left( 1+T^{*}\delta -t_{1}^{*}\delta \right) }^{2}}\right. \\&\left. \left. \left. \quad +\frac{\hbox {I}_{e}p\left( Y^{2}-Z^{2}\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) ^{2}-2c\hbox {I}_{p}\left( -1+e^{\left( t_{1}^{*}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }-t_{1}^{*}\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) +Y\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \right) }{T^{{*}^{2}}\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) ^{2}}\right) \right) \right) >0 \end{aligned}$$

It means that the Hessian matrix H at point \(\left( t_{1}^{*},T^{*} \right) \) is negative definite. As a result, we find that the point \(\left( t_{1}^{*},T^{*} \right) \) is a global maximum.

Proof of part (b): For any given p, if \({\Phi }\left( p \right) <0\), then \(F\left( {{t_{1}}} \right) <0\) for all \({{t_{1}}}\in \left[ t_{d},t_{1}^{b} \right) \). Therefore,

$$\begin{aligned}&\frac{d{TP}_{1}\left( p,{{t_{1}}},T\right) }{dT}=\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }{T^{2}}\\&\quad \left( \left( \hbox {p}-\hbox {c}+\hbox {M} \right) \left( \frac{\hbox {t}_{1}+\frac{\hbox {N}\left[ e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( {{t_{1}}}-t_{d} \right) }-1 \right] +ht_{d}+\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-Y \right) }-1 \right) }{{\updelta }\left\{ \hbox {p}-\hbox {c}+\hbox {M}-\hbox {N}\left[ e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( {{t_{1}}}-t_{d} \right) }-1 \right] -ht_{d+}\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-Y \right) }-1 \right) \right\} }}{1+\updelta \left( \hbox {t}_{1}+\frac{\hbox {N}\left[ e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( {{t_{1}}}-t_{d} \right) }-1 \right] +ht_{d}+\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-Y \right) }-1 \right) }{{\updelta }\left\{ \hbox {p}-\hbox {c}+\hbox {M}-\hbox {N}\left[ e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( {{t_{1}}}-t_{d} \right) }-1 \right] -ht_{d+}\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-Y \right) }-1 \right) \right\} }-\hbox {t}_{1}\right) }-\hbox {t}_{1}\right. \right. \\&\quad \left. -\frac{\hbox {ln}[1+\updelta \left( \hbox {t}_{1}+\frac{\hbox {N}\left[ e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( {{t_{1}}}-t_{d} \right) }-1 \right] +ht_{d}+\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-Y \right) }-1 \right) }{{\updelta }\left\{ \hbox {p}-\hbox {c}+\hbox {M}-\hbox {N}\left[ e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( {{t_{1}}}-t_{d} \right) }-1 \right] -ht_{d+}\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-Y \right) }-1 \right) \right\} }-\hbox {t}_{1}\right) }{{\updelta }}\right) \\&\quad \quad +\frac{\hbox {N}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\times \left[ \hbox {e}^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-\hbox {t}_{\mathrm{d}} \right) }-\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( \hbox {t}_{1}-\hbox {t}_{\mathrm{d}} \right) -1 \right] +\hbox {h}\hbox {t}_{\mathrm{d}}\hbox {t}_{1}-\frac{\hbox {h}\hbox {t}_{\mathrm{d}}^{2}}{2}+\frac{\hbox {A}}{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }\\&\quad \quad \left. -\frac{1}{2}I_{e}p\left( \mu _{1}R\left( p \right) +\mu _{2} \right) \left( Y^{2}-Z^{2}\right) +\frac{cI_{p}\left( \mu _{1}R\left( p \right) +\mu _{2}\right) \left( -\hbox {t1}+Y-\frac{1-e^{\left( \hbox {t1}-Y\right) \left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) }{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\right) \\&\quad =\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) F\left( {{t_{1}}} \right) }{T^{2}} \end{aligned}$$

It is clear that \(\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) }{T^{2}}{>}0\) and we showed that \(F\left( {{t_{1}}} \right) {<}0\). Therefore, \(\frac{\left( \mu _{1}R\left( p \right) +\mu _{2} \right) F\left( {{t_{1}}} \right) }{T^{2}}{<}0\), which means that \({\textit{TP}}_{1}(p,{{t_{1}}},T)\) is a strictly decreasing function of T. Thus, when T is minimum, \({\textit{TP}}_{1}(p,{{t_{1}}},T)\) attains its maximum value. From Eq. (23), the minimum value of T occurs at

$$\begin{aligned} \hbox {T}= t_{d}+\frac{ht_{d}+\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( t_{d}-Y \right) }-\hbox {1} \right) }{{\updelta }\left\{ {\hbox {p}}-{\hbox {c}}+{\hbox {M}}-ht_{d+}\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( t_{d}-Y \right) }-\hbox {1} \right) \right\} } \end{aligned}$$

As \({{t_{1}}}=t_{d}\), \({\textit{TP}}_{1}(p,{{t_{1}}},T)\) has a maximum value at point \((t_{1}^{*},T^{{*}})\), where \(t_{1}^{*}=t_{d}\) and

$$\begin{aligned} T^{{*}}=t_{d}+\frac{ht_{d}+\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( t_{d}-Y \right) }-\hbox {1} \right) }{{\updelta }\left\{ {\hbox {p}}-{\hbox {c}}+{\hbox {M}}-ht_{d+}\frac{cI_{p}}{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) }\left( e^{\left( \frac{\alpha _{1}+\alpha _{2}}{2} \right) \left( t_{d}-Y \right) }-\hbox {1} \right) \right\} } \end{aligned}$$

Appendix 3: Proof of Theorem 3

Using step 1, the initial total profit function with staring value of \(\hbox {t}_{1}^{0}, \hbox {T}^{0},{\hbox {and}\,\hbox {p}}_{{0}}\) is computed. For notational convenience, let

$$\begin{aligned} {\textit{TP}}_{1}\left( \hbox {t}_{1}^{{0}}\hbox {, }\hbox {T}^{{0}}, \hbox {p}_{{0}} \right) = {\Pi }^{\hbox {(o)}} \end{aligned}$$

Using step 2, \(\hbox {p}_{{0}}\) is fixed and the value of \(\hbox {t}_{1}^{1}\hbox { and }\hbox {T}^{1}\) is obtained. Therefore, the new total profit function is resulted.

$$\begin{aligned} {\textit{TP}}_{1}\left( \hbox {t}_{1}^{1}, \hbox {T}^{1}, \hbox {p}_{0} \right) ={\Pi }^{(1)} \end{aligned}$$

Applying Theorem 1, we determined that \({\textit{TP}}_{1}\left( \hbox {t}_{1}^{1}, \hbox {T}^{1}, \hbox {p}_{{0}} \right) \) is concave and takes its global solution at \({\hbox {(t}}_{1}^{1}, \hbox {T}^{1})\). So, \({\textit{TP}}_{1}\left( \hbox {t}_{1}^{1}, \hbox {T}^{1}, \hbox {p}_{0} \right) \ge {\textit{TP}}_{1}\left( \hbox {t}_{1}^{0},\hbox {T}^{0},\hbox {p}_{0}\right) \).

If \({\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1}, \hbox {p}_{{0}} \right) ={\textit{TP}}_{1}\left( \hbox {t}_{1}^{{0}},\hbox {T}^{{0}},\hbox {p}_{{0}} \right) \), then the algorithm is convergent. Else,

$$\begin{aligned} {\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{{0}} \right) {>}{\textit{TP}}_{1}\left( \hbox {t}_{1}^{{0}},\hbox {T}^{{0}},\hbox {p}_{{0}} \right) \Longrightarrow {\Pi }^{(1)}{>}{\Pi }^{\hbox {(o)}} \end{aligned}$$

Now, by fixing \(\hbox {t}_{1}^{1}{\hbox { and T}}^{1}\), we solve Eq. (27) and the new selling price \(\hbox {p}_{1}\) is obtained. Thus, the new total profit function is found.

$$\begin{aligned} {\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{1} \right) ={\Pi }^{(2)} \end{aligned}$$

Using Theorem 2, we proved that \({\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{1} \right) \) is concave and obtained its global solution at \(\hbox {p}_{1}\). Therefore,

$$\begin{aligned} {\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{1} \right) \ge {\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{{0}} \right) \end{aligned}$$

If \({\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{1} \right) ={\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{{0}} \right) \), then the algorithm is convergent. Else,

$$\begin{aligned} {\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{1} \right) {>}{\textit{TP}}_{1}\left( \hbox {t}_{1}^{1},\hbox {T}^{1},\hbox {p}_{{0}} \right) \Longrightarrow {\Pi }^{(2)}{>}{\Pi }^{(1)} \end{aligned}$$

Using the above approach, we obtain the strictly increasing sequence of \({\textit{TP}}_{1}\left( {{t_{1}}}\hbox {,T,p} \right) \)as follows:

$$\begin{aligned} {\Pi }^{(n)}{>}{\Pi }^{({\hbox {n}}-1)}{>}\cdots >{\Pi ^{(1)}}{>}{\Pi }^{\hbox {(o)}} \end{aligned}$$

We assume that the retailer’s total profit is finite; i.e. the retailer’s total profit has an upper bound. It implies that the obtained strictly increasing sequence of \({\textit{TP}}_{1}\left( {{t_{1}}}\hbox {,T,p} \right) \) has an upper bound. On the other hand, a strictly increasing sequence with an upper bound is convergent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maihami, R., Karimi, B. & Fatemi Ghomi, S.M.T. Effect of two-echelon trade credit on pricing-inventory policy of non-instantaneous deteriorating products with probabilistic demand and deterioration functions. Ann Oper Res 257, 237–273 (2017). https://doi.org/10.1007/s10479-016-2195-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2195-3

Keywords