Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Low-carbon supply policies and supply chain performance with carbon concerned demand

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A dilemma between economic growth and environmental deterioration has never been recognized so seriously until the environmental problem has been impacting everyone’s daily life cogently (e.g., the serious fog and haze in China). Simultaneously, the rising environment awareness of consumers leads to the close attention to the product’s carbon performance reflected in the carbon concerned demand, which provides opportunity to rebuild our business ecosystem. The paper expands the environment view to supply chain operations. A Stackelberg-like model is developed to game-theoretically analyze the decentralized decisions of the manufacturer and retailer. Low-carbon effort is brought into decision by both sides. The centralized decision-making is also investigated as a benchmark to evaluate the supply chain performance. Additionally,we propose a carbon-related price–discount sharing-like scheme to achieve the channel coordination and discuss the possibility of Pareto improvement. Several interesting managerial insights on low-carbon factors are concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar, F. X., & Vlosky, R. P. (2007). Consumer willingness to pay price premiums for environmentally certified wood products in the US. Forest Policy and Economics, 9(8), 1100–1112.

    Article  Google Scholar 

  • Benjaafar, S., Li, Y., & Daskin, M. (2013). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116.

    Article  Google Scholar 

  • Bernstein, F., & Federgruen, A. (2005). Decentralized supply chains with competing retailers under demand uncertainty. Management Science, 51(1), 18–29.

    Article  Google Scholar 

  • Bhatia, P., Cummis, C., Rich, D., Draucker, L., Lahd, H., & Brown, A. (2011). Greenhouse gas protocol corporate value chain (scope 3) accounting and reporting standard. Technical report, World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD). http://www.wri.org/sites/default/files/pdf/ghgp_corporate_value_chain_scope_3_standard.pdf

  • Bonini, S., & Oppenheim, J. (2008). Cultivating the green consumer. Stanfold Social Innovation Review, 6(4), 56–61.

    Google Scholar 

  • Cachon, G. P. (2003). Supply chain coordination with contracts. In A. de Kok & S. Graves (Eds.), Supply chain management: Design, coordination and operation, handbooks in operations research and management science (Vol. 11, pp. 227–339). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Cachon, G. P. (2014). Retail store density and the cost of greenhouse gas emissions. Management Science, 60(8), 1907–1925.

    Article  Google Scholar 

  • Chen, F., Federgruen, A., & Zheng, Y. S. (2001). Coordination mechanisms for a distribution system with one supplier and multiple retailers. Management Science, 47(5), 693–708.

    Article  Google Scholar 

  • Conrad, K. (2005). Price competition and product differentiation when consumers care for the environment. Environmental and Resource Economics, 31(1), 1–19.

    Article  Google Scholar 

  • Dong, C., Shen, B., Chow, P. S., Yang, L., & Ng, C. T. (2014). Sustainability investment under cap-and-trade regulation. Annals of Operations Research. doi:10.1007/s10479-013-1514-1

  • Du, S., Ma, F., Fu, Z., Zhu, L., & Zhang, J. (2011). Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’system. Annals of Operations Research. doi:10.1007/s10479-011-0964-6

  • El Ouardighi, F., Benchekroun, H., & Grass, D. (2014). Controlling pollution and environmental absorption capacity. Annals of Operations Research, 220(1), 111–133.

    Article  Google Scholar 

  • Ellerman, A. D., Convery, F. J., & de Perthuis, C. (2010). Pricing carbon: The European Union emissions trading scheme. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gallego, G., & van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Science, 40(8), 999–1020.

    Article  Google Scholar 

  • Hoen, K. M., Tan, T., Fransoo, J. C., & van Houtum, G. J. (2014). Switching transport modes to meet voluntary carbon emission targets. Transportation Science, 48(4), 592–608.

    Article  Google Scholar 

  • Hua, G., Cheng, T., & Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178–185.

    Article  Google Scholar 

  • Jeuland, A. P., & Shugan, S. M. (1988). Channel of distribution profits when channel members from conjectures. Marketing Science, 7(2), 202–210.

    Article  Google Scholar 

  • Jira, C., & Toffel, M. W. (2013). Engaging supply chains in climate change. Manufacturing & Service Operations Management, 15(4), 559–577.

    Article  Google Scholar 

  • Kainuma, Y., & Tawara, N. (2006). A multiple attribute utility theory approach to lean and green supply chain management. International Journal of Production Economics, 101(1), 99–108.

    Article  Google Scholar 

  • Kolk, A., Levy, D., & Pinkse, J. (2008). Corporate responses in an emerging climate regime: The institutionalization and commensuration of carbon disclosure. European Accounting Review, 17(4), 719–745.

    Article  Google Scholar 

  • Laroche, M., Bergeron, J., & Barbaro-Forleo, G. (2001). Targeting consumers who are willing to pay more for environmentally friendly products. Journal of Consumer Marketing, 18(6), 503–520.

    Article  Google Scholar 

  • Liu, Z. L., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply chains. European Journal of Operational Research, 218(3), 602–613.

    Article  Google Scholar 

  • Loureiro, M. L., McCluskey, J. J., & Mittelhammer, R. C. (2002). Will consumers pay a premium for eco-labeled apples? Journal of Consumer Affairs, 36(2), 203–219.

    Article  Google Scholar 

  • MacLeod, C., & Eversley, M. (2014). U.S., China reach ‘historic’ deal to cut emissions. USA Today. Accessed November 20, 2014 from http://www.usatoday.com/story/news/world/2014/11/11/china-climate-change-deal/18895661/

  • Moon, W., Florkowski, W. J., Brückner, B., & Schonhof, I. (2002). Willingness to pay for environmental practices: Implications for eco-labeling. Land Economics, 78(1), 88–102.

    Article  Google Scholar 

  • NCDR. (2014). China National Commission for disaster reduction releases the 2013 national natural disasters report. Accessed November 13, 2014 from http://www.jianzai.gov.cn/DRpublish/jzdt/0000000000002216.html

  • Nielsen Company. (2001). The green gap between environmental concerns and the cash register. Accessed January 5, 2014 from http://www.nielsen.com/us/en/insights/news/2011/the-green-gap-between-environmental-concerns-and-the-cash-register.html

  • Nordhaus, W. D. (1991). To slow or not to slow: The economics of the greenhouse effect. The Economic Journal, 101(407), 920–937.

    Article  Google Scholar 

  • Pachauri, R., & Reisinger, A. (2008). Climate change 2007: Synthesis report: Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Technical report, IPCC. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm

  • Parry, M., Canziani, O., Palutikof, J., van der Linden, P., & Hanson, C. (2007). Climate change 2007: Impacts, adaptation and vulnerability: Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pasternack, B. A. (1985). Optimal pricing and return policies for perishable commodities. Marketing Science, 4(2), 166–176.

    Article  Google Scholar 

  • P&G. (2013). P&G 2013 Sustainability Report. Technical report, Procter & Gamble. http://image.pg.com.cn/Csr/File/PG_2013_Sustainability_Report.pdf

  • Ranganathan, J., Corbier, L., Bhatia, P., Schmitz, S., Gage, P., & Oren, K. (2004). The greenhouse gas protocol: A corporate accounting and reporting standard (revised edition). Technical report, World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD). http://pdf.wri.org/ghg_protocol_2004.pdf

  • Roheim, C. A., Asche, F., & Santos, J. I. (2011). The elusive price premium for ecolabelled products: Evidence from seafood in the UK market. Journal of Agricultural Economics, 62(3), 655–668.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80.

    Article  Google Scholar 

  • Toptal, A., & Çetinkaya, B. (2015). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research. doi:10.1007/s10479-015-1858-9

  • Zhang, Q., He, K., & Huo, H. (2012). Policy: Cleaning China’s air. Nature, 484(7393), 161–162.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Zhimin Huang for his patience and valuable suggestions. This research was supported by National Natural Science Foundation of China (Grant Nos. 71571171, 71271199), Program for New Century Excellent Talents in University (Grant No. NCET-13-0538), the Fundamental Research Funds for the Central Universities of China (No. WK2040160008) and Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Appendices

Appendix 1: Proof of Proposition 1

Proof

We solve the dynamic game of the retailer and the manufacturer using the standard backward induction. We assume all parameters are positive.

Step 1: Solve Retailer’s profit maximization problem

The profit function faced by retailer has been defined in Eq. (4).

The first derivation of \(\pi _r\) regarding p and \(x_r\) respectively is:

$$\begin{aligned} \frac{{\partial {\pi _r}}}{{\partial p}}= & {} \left[ {D - \alpha p + \beta - \beta \left[ {\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}} \right] } \right] - \alpha \left( {p - w - {x_r}} \right) = 0\\ \frac{{\partial {\pi _r}}}{{\partial {x_r}}}= & {} \left( {p - w - {x_r}} \right) \beta {\lambda _r} \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}\nonumber \\&- \left[ {D - \alpha p + \beta - \beta \left[ {\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}} \right] } \right] = 0 \end{aligned}$$

The stationary point \((p,x_r)\) of the \(\pi _r\) can be calculated through simultaneous equations. And \((p,x_r)\) can be denoted in Eqs. (5) and (6).

It has been verified that the determinant of the Hessian matrix at the stationary point is negative definite:

$$\begin{aligned} A= & {} \frac{{{\partial ^2}{\pi _r}}}{{\partial {p^2}}} = - 2\alpha < 0\\ B= & {} \frac{{{\partial ^2}{\pi _r}}}{{\partial p\partial {x_r}}} = \beta \left( {1 - \psi } \right) {\lambda _r}{{\mathbf {e}}^{ - {\lambda _r}{x_r}}} + \alpha \\ C= & {} \frac{{{\partial ^2}{\pi _r}}}{{\partial x_r^2}} = - 2\beta {\lambda _r}\left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}} - \beta \lambda _r^2\left( {p - w - {x_r}} \right) \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}\\ AC - {B^2}= & {} 4\alpha \beta {\lambda _r}\left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}} + 2\alpha \left( {p - w - {x_r}} \right) \beta {\lambda _r}^2\left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}\nonumber \\&- {\left[ {\beta {\lambda _r}\left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}} + \alpha } \right] ^2}\nonumber \\= & {} 2\alpha \left( {p - w - {x_r}} \right) \beta {\lambda _r}^2\left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}} > 0 \end{aligned}$$

So the \(\pi _r\) reaches the maximum at the stationary point.

Step 2: Solve manufacturer’s profit maximization problem

As the Stackelberg leader, the manufacturer anticipates the retailer’s best response, shown by Eqs. (5) and (6), and incorporate it to her profit function, we have Eq. (7).

The first derivation of \(\pi _m\) regarding w and \(x_m\) respectively is:

$$\begin{aligned} \frac{{\partial {\pi _m}}}{{\partial w}}= & {} \frac{1}{2}\left[ {D + \beta - \beta \psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} - \alpha w - \frac{\alpha }{{{\lambda _r}}}\left( {1 + \ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha }} \right) } \right] \nonumber \\&- \frac{\alpha }{2}\left( {w - c - {x_m}} \right) = 0\\ \frac{{\partial {\pi _m}}}{{\partial {x_m}}}= & {} - \frac{1}{2}\left[ {D + \beta - \beta \psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} - \alpha w - \frac{\alpha }{{{\lambda _r}}}\left( {1 + \ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha }} \right) } \right] \nonumber \\&+\, \frac{{\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}}}}{2}\left( {w - c - {x_m}} \right) = 0 \end{aligned}$$

The stationary point \((w,x_m)\) of the \(\pi _m\) can be calculated through simultaneous equations, denoted in Eq. (8).

It also has been verified that the determinant of the Hessian matrix at the stationary point is negative definite:

$$\begin{aligned} A= & {} \frac{{{\partial ^2}{\pi _m}}}{{\partial {w^2}}} = - \alpha < 0\\ B= & {} \frac{{{\partial ^2}{\pi _m}}}{{\partial w\partial {x_m}}} = \frac{1}{2}\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \frac{\alpha }{2}\\ C= & {} \frac{{{\partial ^2}{\pi _m}}}{{\partial {x_m}^2}} = - \beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} - \frac{1}{2}\beta \psi {\lambda _m}^2{{\mathbf {e}}^{ - {\lambda _m}{x_m}}}\left( {w - c - {x_m}} \right) \\ AC - {B^2}= & {} \alpha \beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \frac{1}{2}\alpha \beta \psi {\lambda _m}^2{{\mathbf {e}}^{ - {\lambda _m}{x_m}}}\left( {w - c - {x_m}} \right) - {\left( {\frac{1}{2}\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \frac{\alpha }{2}} \right) ^2}\nonumber \\= & {} \frac{1}{2}\alpha \beta \psi {\lambda _m}^2{{\mathbf {e}}^{ - {\lambda _m}{x_m}}}\left( {w - c - {x_m}} \right) > 0 \end{aligned}$$

So the \(\pi _m\) reaches the maximum at the stationary point.

Step 3: Solve the optimal solution and its applicable condition

In the Stackelberg game, the optimum decision for the manufacturer and retailer have been shown in Eqs. (8) and (9).

It is apparent that the boundary conditions of the optimal solution must be satisfied and demonstrated as:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}{{x_m}^* = \frac{1}{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } > 0}\\ &{}{{x_r}^* = \frac{1}{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha }}\\ &{}{{p^*} - {w^*} - x_r^* \ge 0}\\ &{}{{w^*} - x_m^* - c \ge 0} \end{array} \right. \end{aligned}$$

Reducing the above inequality, we have the optimal condition:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}{\beta {\lambda _r}\left( {1 - \psi } \right) > \alpha }\\ &{}{\beta {\lambda _m}\psi > \alpha }\\ &{}{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c > 0} \end{array} \right. \end{aligned}$$

\(\square \)

Appendix 2: Proof of Corollary 3

Proof

From the Proposition 1, the optimal retail price and wholesale price:

$$\begin{aligned} p^*= & {} \frac{1}{4}\left[ {\frac{{3D}}{\alpha } + \frac{{3\beta }}{\alpha } - 3\left( {\frac{1}{{{\lambda _m}}} + \frac{1}{{{\lambda _r}}}} \right) + x_m^* + x_r^* + c} \right] \nonumber \\= & {} \frac{1}{4}\left[ {\frac{{3D}}{\alpha } + \frac{{3\beta }}{\alpha } - 3\left( {\frac{1}{{{\lambda _m}}} + \frac{1}{{{\lambda _r}}}} \right) + \frac{1}{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } + \frac{1}{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } + c} \right] . \\ w^*= & {} \frac{1}{2}\left[ {\frac{D}{\alpha } + \frac{\beta }{\alpha } - \left( {\frac{1}{{{\lambda _m}}} + \frac{1}{{{\lambda _r}}}} \right) + x_m^* - x_r^* + c} \right] \nonumber \\= & {} \frac{1}{2}\left[ {\frac{D}{\alpha } + \frac{\beta }{\alpha } - \left( {\frac{1}{{{\lambda _m}}} + \frac{1}{{{\lambda _r}}}} \right) + \frac{1}{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } - \frac{1}{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } + c} \right] \end{aligned}$$

\(\frac{{\partial {p^*}}}{{\partial \left( {\beta /\alpha } \right) }} > 0\) which means that the retail price is always increasing to \(\beta /\alpha \) While \(\frac{{\partial {w^*}}}{{\partial \left( {\beta /\alpha } \right) }} = 1 + \left( {\frac{1}{{{\lambda _m}}} - \frac{1}{{{\lambda _r}}}} \right) \frac{\alpha }{\beta }\), Note \(\varLambda = \left( \frac{1}{{{\lambda _r}}} - \frac{1}{{{\lambda _m}}} \right) \) which captures the manufacture’s technological advantage relative to the retailer’s. So the demand characteristic of low-carbon preference compared to price sensitivity \((\beta /\alpha )\) has a piecewise impact on the wholesale price \(w^*\), i.e., \(w^*\) is increasing in \((\beta /\alpha )\) greater than \(\varLambda \), while decreasing in \(\beta /\alpha \) less than \(\varLambda \).

Obviously, the generalized technological level of carbon reduction of the manufacturer \((\psi \lambda _m)\) positively impacts both pricing decisions, however, that of the retailer \(\left( (1-\psi ) \lambda _r\right) \) has a positive impact on the retail price \(p^*\) while a negative impact on the wholesale price \(w^*\); The retail price \(p^*\) is positively correlative to both low-carbon investments respectively, while the wholesale price \(w^*\) is positively correlative to \((x_m^*-x_r^*)\), the gap that the manufacturer’s low-carbon investment is larger than the retailer’s. It is not surprising that the more the manufacturer invests, the higher she would charge. \(\square \)

Appendix 3: Proofs of Propositions and corollaries in Sect. 4.2

1.1 Proof of Proposition 2

Proof

Under the centralized decision-making system, the supply chain’s profit function is Eq. (13).

The first derivation of \({\varPi }\) regarding p, \({x_r}\) and \({x_m}\) respectively is:

$$\begin{aligned} \frac{{\partial {\varPi }}}{{\partial p}}= & {} \left[ {D + \beta - \alpha p - \beta \left[ {\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}} \right] } \right] - \alpha \left( {p - c - {x_r} - {x_m}} \right) = 0\\ \frac{{\partial {\varPi }}}{{\partial {x_r}}}= & {} \left( {p - c - {x_r} - {x_m}} \right) \beta {\lambda _r}\left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}} \\&- \left[ {D + \beta - \alpha p - \beta \left[ {\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}} \right] } \right] = 0 \\ \frac{{\partial {\varPi }}}{{\partial {x_m}}}= & {} \left( {p - c - {x_r} - {x_m}} \right) \beta {\lambda _m}\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} \\&- \left[ {D + \beta - \alpha p - \beta \left[ {\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}} \right] } \right] = 0 \end{aligned}$$

The stationary point \(\left( {p,{x_r},{x_m}} \right) \) of the \({\varPi }\) can be calculated through simultaneous equations denoted in Eqs. (14) and (15).

It has been verified that the determinant of the Hessian matrix M at the stationary point is negative definite:

$$\begin{aligned} M = \left[ \begin{array}{lll} {\frac{{{\partial ^2}{\varPi }}}{{\partial {p^2}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial p\partial {x_m}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial p\partial {x_r}}}}\\ {\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}\partial p}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}^2}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}\partial {x_r}}}}\\ {\frac{{{\partial ^2}{\varPi }}}{{\partial {x_r}\partial p}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_r}\partial {x_m}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_r}^2}}} \end{array} \right] \end{aligned}$$

Its principal minors of order k is defined as M, where

$$\begin{aligned} {M_1}= & {} \left. {\left| {\frac{{{\partial ^2}{\varPi }}}{{\partial {p^2}}}} \right. } \right| = - 2\alpha < 0\\ {M_2}= & {} \left. {\left| {\begin{array}{ll} {\frac{{{\partial ^2}{\varPi }}}{{\partial {p^2}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial p\partial {x_m}}}}\\ {\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}\partial p}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}^2}}} \end{array}} \right. } \right| \nonumber \\= & {} \left. {\left| {\begin{array}{ll} { - 2\alpha }&{}{\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \alpha }\\ {\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \alpha }&{}{ - 2\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} - \left( {p - c - {x_r} - {x_m}} \right) \beta \psi \lambda _m^2{{\mathbf {e}}^{ - {\lambda _m}{x_m}}}} \end{array}} \right. } \right| \nonumber \\= & {} 4\alpha \beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + 2\alpha \left( {p - c - {x_r} - {x_m}} \right) \beta \psi \lambda _m^2{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} - {\left( {\beta \psi {\lambda _m}{{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \alpha } \right) ^2}\\ {M_2}{\bigg |_{p = {p^o},{x_r} = x_r^o,{x_m} = x_m^o}}= & {} 2{\alpha ^2}{\lambda _m}\left( {{p^o} - c - x_r^o - x_m^o} \right) > 0\\ {M_3}= & {} \left. {\left| {\begin{array}{lll} {\frac{{{\partial ^2}{\varPi }}}{{\partial {p^2}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial p\partial {x_m}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial p\partial {x_r}}}}\\ {\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}\partial p}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}^2}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_m}\partial {x_r}}}}\\ {\frac{{{\partial ^2}{\varPi }}}{{\partial {x_r}\partial p}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_r}\partial {x_m}}}}&{}{\frac{{{\partial ^2}{\varPi }}}{{\partial {x_r}^2}}} \end{array}} \right. } \right| \\ {M_3}{\bigg |_{p = {p^o},{x_r} = x_r^o,{x_m} = x_m^o}}= & {} - 2\left( {{p^o} - c - x_r^o - x_m^o} \right) {\lambda _m}{\lambda _r}{\alpha ^3} < 0 \end{aligned}$$

So the \({\varPi }\) reaches the maximum at the stationary point. It is apparent that the boundary conditions of the optimal solution must be satisfied and demonstrated as:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}{x_m^o = \frac{1}{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } > 0}\\ &{}{x_r^o = \frac{1}{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha }}\\ &{}{p^o - x_r^o - x_m^o > 0} \end{array} \right. \end{aligned}$$

Reducing the above inequality, we have the optimal condition:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}{\beta {\lambda _r}\left( {1 - \psi } \right) > \alpha }\\ &{}{\beta {\lambda _m}\psi > \alpha }\\ &{}{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c > 0} \end{array} \right. \end{aligned}$$

Thus, the channel’s profit in the centralized decision-making system has been shown in Eq. (15). \(\square \)

1.2 Proof of Corollary 4

Proof

The supply chain optimal retail price \({p_1}^o\) can be denoted in Eq. (14), while the optimum decision \(p^*\) for the retailer in decentralized decision-making system has been shown in Eq. (9).

$$\begin{aligned} {p^*} - p^o= & {} \frac{{3D + 3\beta - \frac{{3\alpha }}{{{\lambda _m}}} - \frac{{3\alpha }}{{{\lambda _r}}} + \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } + \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } + \alpha c}}{{4\alpha }} \nonumber \\&-\frac{{2D + 2\beta - \frac{{2\alpha }}{{{\lambda _m}}} - \frac{{2\alpha }}{{{\lambda _r}}} + \frac{{2\alpha }}{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } + \frac{{2\alpha }}{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } + 2\alpha c}}{{4\alpha }}\nonumber \\= & {} \frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } - \alpha c}}{{4\alpha }}\nonumber \\= & {} \frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} + \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } + \alpha c}}{{4\alpha }} - \frac{{\frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } + \alpha c}}{{2\alpha }}\nonumber \\= & {} \frac{{{w^*}}}{2} - \frac{{x_m^* + c}}{2} > 0\\ \varPi ^o - {\varPi ^*}= & {} \varPi ^o - \left( {\pi _m^* + \pi _r^*} \right) \nonumber \\= & {} \frac{1}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta {\lambda _m}\psi }}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta {\lambda _r}\left( {1 - \psi } \right) }}{\alpha } - \alpha c}}{2}} \right) ^2} \nonumber \\&- \frac{3}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c}}{4}} \right) ^2}\nonumber \\= & {} \frac{1}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c}}{4}} \right) ^2} =\frac{1}{3}{\varPi ^*} \end{aligned}$$

Hence, \({p^*} > p^o\), while \(\varPi ^o = \frac{4}{3}{\varPi ^*}\) \(\square \)

Appendix 4: Proofs of Propositions and corollaries in Sect. 4.3

1.1 Proof of Proposition 3

Proof

Substituting \(w = \left( {1 - \phi } \right) p + \phi c\) and \(\phi = \frac{{{x_r^*}}}{{{x_m^*} + {x_r^*}}}\) into \(\pi _r\) and reducing, we have:

$$\begin{aligned} {\pi _r}= & {} \left( {p - w - {x_r}} \right) \left[ {D + \beta - \alpha p - \beta \left[ {\psi {{\mathbf {e}}^{ - {\lambda _m}{x_m}}} + \left( {1 - \psi } \right) {{\mathbf {e}}^{ - {\lambda _r}{x_r}}}} \right] } \right] = \phi {\varPi ^o}\\ {\pi _m}= & {} (1-\phi ){\varPi ^o} \end{aligned}$$

So the individual profits affine to the channelwide one has been achieved. Therefor, we coordinate the supply chain with a fixed allocation. \(\square \)

1.2 Proof of Corollary 5

Proof

Under the centralized decision-making system with channel coordination, the retailer’s profit can be denoted as Eq. (17), and the manufacturer’s profit can be denoted as Eq. (18), while under the decentralized decision-making system, the manufacturer’s profit can be denoted as:

$$\begin{aligned} \pi _m^* = \frac{2}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c}}{4}} \right) ^2} \end{aligned}$$

And the retailer’s profit can be denoted as:

$$\begin{aligned} \pi _r^* = \frac{1}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c}}{4}} \right) ^2} \end{aligned}$$

If \(\pi _r^c > \pi _r^*\), \(\pi _m^c > \pi _m^*\):

$$\begin{aligned} \pi _r^c - \pi _r^*= & {} \frac{{3\phi - 1}}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c}}{4}} \right) ^2} > 0\\ \pi _m^c - \pi _m^*= & {} \frac{{2 - 4\phi }}{\alpha }{\left( {\frac{{D + \beta - \frac{\alpha }{{{\lambda _m}}} - \frac{\alpha }{{{\lambda _r}}} - \frac{\alpha }{{{\lambda _m}}}\ln \frac{{\beta \psi {\lambda _m}}}{\alpha } - \frac{\alpha }{{{\lambda _r}}}\ln \frac{{\beta \left( {1 - \psi } \right) {\lambda _r}}}{\alpha } - \alpha c}}{4}} \right) ^2} > 0 \end{aligned}$$

So \(\frac{1}{3} < \phi < \frac{1}{2}\), \(\pi _m^c > \pi _m^*\) and \(\pi _r^c > \pi _r^*\) are satisfied. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Hu, L. & Wang, L. Low-carbon supply policies and supply chain performance with carbon concerned demand. Ann Oper Res 255, 569–590 (2017). https://doi.org/10.1007/s10479-015-1988-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1988-0

Keywords

Navigation