Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the use of graphs in discrete tomography

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this tutorial paper, we consider the basic image reconstruction problem which stems from discrete tomography. We derive a graph theoretical model and we explore some variations and extensions of this model. This allows us to establish connections with scheduling and timetabling applications. The complexity status of these problems is studied and we exhibit some polynomially solvable cases. We show how various classical techniques of operations research like matching, 2-SAT, network flows are applied to derive some of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Alfandari, L., Lemalade, J. L., Nagih, A., Plateau, G. (2009, in press). A MIP flow model for crop-rotation planning in a sustainable development context. Annals of Operations Research.

  • Alpers, A., Rodek, L., Poulsen, H. F., Knudsen, E., & Herman, G. T. (2007). Discrete tomography for generating maps of polycrystals. In G. T. Herman & A. Kuba (Eds.), Advances in discrete tomography and its applications (pp. 271–301). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Aspvall, B., Plass, M. F., & Tarjan, R. (1979). A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Information Processing Letters, 8, 121–123.

    Article  Google Scholar 

  • Batenburg, K. J. (2007). Network flow algorithms for discrete tomography. In G. T. Herman & A. Kuba (Eds.), Advances in discrete tomography and its applications (pp. 175–207). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Baumann, J., Kiss, Z., Krimmel, S., Kuba, A., Nagy, A., Rodek, L., Schillinger, B., & Stephan, J. (2007). Discrete tomography methods for nondestructive testing. In G. T. Herman & A. Kuba (Eds.), Advances in discrete tomography and its applications (pp. 303–332). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Bentz, C., Costa, M.-C., de Werra, D., Picouleau, C., & Ries, B. (2008). On a graph coloring problem arising from discrete tomography. Networks, 51(4), 256–267.

    Article  Google Scholar 

  • Bentz, C., Costa, M.-C., de Werra, D., Picouleau, C., & Ries, B. (2009). Degree-constrained edge partitioning in graphs arising from discrete tomography. Journal of Graph Algorithms and Applications, 13(2), 99–118.

    Google Scholar 

  • Berge, C. (1983). Graphes. Paris: Gauthier-Villars.

    Google Scholar 

  • Brocchi, S., Frosini, A., & Picouleau, C. (2008). Reconstruction of binary matrices under fixed size neighborhood constraints. Theoretical Computer Science, 406, 43–54.

    Article  Google Scholar 

  • Chrobak, M., & Dürr, C. (2001). Reconstructing polyatomic structures from X-rays: NP-completeness proof for three atoms. Theoretical Computer Science, 259(1), 81–98.

    Article  Google Scholar 

  • Costa, M.-C., de Werra, D., & Picouleau, C. (2006). Using graphs for some discrete tomography problems. Discrete Applied Mathematics, 154, 35–46.

    Article  Google Scholar 

  • Costa, M.-C., de Werra, D., Picouleau, C., & Schindl, D. (2005). A solvable case of image reconstruction in discrete tomography. Discrete Applied Mathematics, 148, 240–245.

    Article  Google Scholar 

  • de Werra, D., Costa, M.-C., Picouleau, C., & Ries, B. (2008). On the use of graphs in discrete tomography. 4OR, 6, 101–123.

    Article  Google Scholar 

  • Déroche, G. (1986). Guy Dupuy: sculpteur discret. Horizons d’Argonne, 52, 104–105.

    Google Scholar 

  • Déroche, G. (2003). Tomographie agricole des vallées de l’Aisne et de l’Aire. Horizons d’Argonne, 80, 17–20.

    Google Scholar 

  • Di Gesù, V., & Kuba, A. (Eds.) (2005). Special issue: IWCIA 2003, ninth international workshop on combinatorial image analysis. Discrete Applied Mathematics 151(3), 1–246.

    Article  Google Scholar 

  • Dürr, C., Guiñez, F., & Matamala, M. (2009). Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard. Technical report. arXiv:0904.3169.

  • Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5, 691–703.

    Article  Google Scholar 

  • Gabow, H., Nishizeki, T., Kariv, O., Leven, D., & Tereda, O. (1985). Algorithms for edge-coloring. Technical report 41/85, Tel Aviv University.

  • Gardner, R. J. (2006). Geometric tomography (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Garey, M., & Johnson, D. S. (1979). Computer and intractability. San Francisco: Freeman.

    Google Scholar 

  • Hansen, P., & de Werra, D. (1997). Nesticity, DIMACS series. Discrete Mathematics and Theoretical Computer Science, 37, 225–232.

    Google Scholar 

  • Herman, G. T., & Kuba, A. (Eds.) (1999a). Discrete tomography: foundations, algorithms and applications. Boston: Birkhäuser.

    Google Scholar 

  • Herman, G. T., & Kuba, A. (1999b). Discrete tomography: a historical overview. In G. T. Herman, & A. Kuba (Eds.), Discrete tomography: foundations, algorithms and applications (pp. 3–34). Boston: Birkhäuser.

    Google Scholar 

  • Herman, G. T., & Kuba, A. (Eds.) (2007). Advances in discrete tomography and its applications. Boston: Birkhäuser.

    Google Scholar 

  • Holyer, I. (1981). NP-completeness of edge-coloring. SIAM Journal on Computing, 10, 718–720.

    Article  Google Scholar 

  • Kaneko, A., & Nagahama, R. (2006). Reconstruction algorithm and switching graph for two-projection tomography with prohibited subregion. In Proc. 13th international conference on discrete geometry for computer imagery (pp. 110–121). Szeged, Hungary.

  • Lovasz, L., & Plummer, M. (1986). Matching theory. Amsterdam: North-Holland.

    Google Scholar 

  • Martinis, R., Socco, L. V., Sambuelli, L., Nicolotti, G., Schmitt, O., & Bucur, V. (2004). Tomographie ultrasonore pour les arbres sur pied. Annals of Forest Science, 61, 157–162.

    Article  Google Scholar 

  • Ryser, H. J. (1957). Combinatorial properties of matrices of zeros and ones. Canadian Journal of Mathematics, 9, 371–377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Picouleau.

Additional information

This paper first appeared in 4OR, 6, 101–123 (2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Werra, D., Costa, MC., Picouleau, C. et al. On the use of graphs in discrete tomography. Ann Oper Res 175, 287–307 (2010). https://doi.org/10.1007/s10479-009-0649-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0649-6

Navigation