Abstract
We study multistage tracking error problems. Different tracking error measures, commonly used in static models, are discussed as well as some problems which arise when we move from static to dynamic models. We are interested in dynamically replicating a benchmark using only a small subset of assets, considering transaction costs due to rebalancing and introducing a liquidity component in the portfolio. We formulate and solve a multistage tracking error model in a stochastic programming framework. We numerically test our model by dynamically replicating the MSCI Euro index. We consider an increasing number of scenarios and assets and show the superior performance of the dynamically optimized tracking portfolio over static strategies.
Similar content being viewed by others
References
Ammann, M., & Zimmermann, H. (2001). The relation between tracking error and tactical asset allocation (Working Paper, 09/01). WWZ Department of Finance.
Barone-Adesi, G., Giannopoulos, K., & Vosper, L. (1999). VaR without correlations for portfolios of derivative securities. The Journal of Future Markets, 19, 583–602.
Barro, D., & Canestrelli, E. (2005). Dynamic portfolio optimisation: Time decomposition using Maximum Principle with a scenario approach. European Journal of Operational Research, 163, 217–229.
Bawa, V. S. (1978). Safety first, stochastic dominance and optimal portfolio choice. Journal of Financial and Quantitative Analysis, 13, 255–271.
Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.
Browne, S. (1999). Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark. Finance and Stochastics, 3(3), 275–294.
Cesari, R., & Cremonini, D. (2003). Benchmarking portfolio insurance and technical analysis: a Monte Carlo comparison of dynamic strategies of asset allocation. The Journal of Economic Dynamics and Control, 27, 987–1011.
Clarke, R. C., Krase, S., & Statman, M. (1994). Tracking errors, regret and tactical asset allocation. The Journal of Portfolio Management, 20, 16–24.
Connor, G., & Leland, H. (1995). Cash management for index tracking. Financial Analysts Journal, 51(6), 75–80.
Consiglio, A., & Zenios, S. A. (2001). Integrated simulation and optimization models for tracking international fixed-income indices. Mathematical Programming Serie B, 89, 311–339.
D’Ecclesia, R. L., Abaffy, J., Bertocchi, M., & Zenios, S. (2002). Modeling an indexed portfolio for the Italian market (Working Paper). University of Bergamo.
Dembo, R., & Rosen, D. (1999). The practice of portfolio replication, a practical overview of forward and inverse problems. Annals of Operations Research, 85, 267–284.
Dempster, M. A. H., & Thompson, G. W. P. (2002). Dynamic portfolio replication using stochastic programming. In M. A. H. Dempster (Ed.), Risk management: value at risk and beyond (pp. 100–128). Cambridge: Cambridge University Press.
Franks, E. C. (1992). Targeting excess-of-benchmark returns. The Journal of Portfolio Management, 18(4), 6–12.
Gaivoronski, A. A., Krylov, S., & van der Vijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163, 115–131.
Judd, K. L. (1999). Numerical methods in economics. Cambridge: MIT Press.
Konno, H., & Yamazaki, H. (1991). Mean absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37, 519–531.
Larsen Jr., G. A., & Resnik, B. G. (1998). Empirical insights on indexing. The Journal of Portfolio Management, 25(1), 51–60.
Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society, 4, 506–510.
MSCI (1999). Euro Indices: Methodology & constituents. www.msci.com.
Ortega, A. J., & Leake, R. S. (1977). Discrete maximum principle with state constrained control. SIAM Journal on Control and Optimization, 15, 119–147.
Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F., & Brown, D. E. (1964). The mathematical theory of optimal processes. Oxford: Pergamon Press.
Rockafellar, R. T., & Wets, R. B. J. (1991). Scenario and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16, 119–147.
Rohweder, H. C. (1998). Implementing stock selection ideas: does tracking error optimization does any good?. The Journal of Portfolio Management, 24(3), 49–59.
Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio Management, 18(4), 13–22.
Rudolf, M., Wolter, H.-J., & Zimmermann, H. (1998). A linear model for tracking error minimization. Journal of Banking and Finance, 23, 85–103.
Sethi, S. P., & Thompson, G. L. (2000). Optimal control theory: applications to management science and economics. Dordrecht: Kluwer Academic.
Siegel, L. P. (2003). The research foundation of AIMR. Benchmarks and investment management. Charlottesville: AIMR.
Worzel, K. J., Vassiadou-Zeniou, C., & Zenios, S. A. (1998). Integrated simulation and optimization models for tracking indices of fixed-income securities. Operations Research, 42, 223–232.
Ziemba, W. T. (2003). The research foundation of AIMR. The stochastic programming approach to asset, liability and wealth management. Charlottesville: AIMR.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barro, D., Canestrelli, E. Tracking error: a multistage portfolio model. Ann Oper Res 165, 47–66 (2009). https://doi.org/10.1007/s10479-007-0308-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-007-0308-8