Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Equitable representation and recruitment

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baïou, M. and M. Balinski. (2000a). “Many-to-Many Matching: Stable Polyandrous Polygamy (or Polygamous Polyandry).” Discrete Applied Mathematics, 101, 1–12.

    Article  Google Scholar 

  • Baïou, M. and M. Balinski. (2000b). “The Stable Admissions Polytope.” Mathematical Programming, 87, 427–439.

    Article  Google Scholar 

  • Baïou, M. and M. Balinski. (2002). “The Stable Allocation (or Ordinal Transportation) Problem.” Mathematics of Operations Research, 27, 485–503; Corrected Version, 27, 662–680.

  • Baïou, M. and M. Balinski. (2003). “Admissions and Recruitment.” American Mathematical Monthly, 110, 386–399.

    Article  Google Scholar 

  • Baïou, M. and M. Balinski. (2004). “Student Admissions and Faculty Recruitment.” Theoretical Computer Science, 322, 245–265.

    Article  Google Scholar 

  • Balinski, M. (1965, 1968, 1970). “Integer Programming: Methods, uses, Applications.” Management Science, 12, 253–313. In G.B. Dantzig and A.F. Veinott, Jr (Eds.), Mathematics of the Decision Sciences, Part 1, American Mathematical Society, Providence, R.I., pp. 179–256; and In H.W. Kuhn (Ed.), Proceedings of the Princeton Symposium on Mathematical Programming, Princeton University Press, Princeton, N.J., pp. 199–266 (together with an addendum “on recent developments,” pp. 267–302).

  • Balinski, M. (2001). “Les Enjeux du Recrutement.” Pour la science, October, 64–70.

  • Balinski, M. (2004a). “Fair Majority Voting (or How to Eliminate Gerrymandering).” November. Laboratoire d’Économétrie de l’École Polytechnique, Paris. To appear in American Mathematical Monthly.

  • Balinski, M. (2004b). Le Suffrage Universel Inachevé. Editions Belin, Paris.

  • Balinski, M. (2005). What is Just? American Mathematical Monthly, 112, 502–511.

    Article  Google Scholar 

  • Balinski, M. and G. Demange V. (1989a). “Algorithms for Proportional Matrices in Reals and Integers.” Mathematical Programming, 45, 193–210.

  • Balinski, M. and G. Demange. (1989b). “An Axiomatic Approach to Proportionality between Matrices.” Mathematics of Operations Research, 14, 700–719.

    Article  Google Scholar 

  • Balinski, M. and S. Rachev.(1997). “Rounding Proportions: Methods of Rounding.” The Mathematical Scientist, 22, 1–26.

    Google Scholar 

  • Balinski, M. and G. Ratier. (1997). “Of Stable Marriages and Graphs, and Strategy and Polytopes.” SIAM Review, 39, 574–604.

    Article  Google Scholar 

  • Balinski, M. and G. Ratier. (1998). “Graphs and Marriages.” American Mathematical Monthly, 105, 430–445.

    Article  Google Scholar 

  • Balinski, M. and T. Sönmez. (1999). “A Tale of two Mechanisms: Student Placement.” Journal of Economic Theory, 84, 73–94.

    Article  Google Scholar 

  • Balinski, M. and K. Spielberg. (1969). “Methods for Integer Programming: Algebraic, Combinatorial, and Enumerative.” In J.S. Aronofsky (Ed.), Progress in Operations Research Vol. III: Relationship between Operations Research and the Computer. New York: John Wiley & Sons, Inc., pp. 195–292.

    Google Scholar 

  • Balinski, M.L. and H.P. Young. (1982, 2001). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press, 2nd ed. Brookings Institution Press.

  • Bliss, G.A., E.W. Brown, L. P. Eisenhart, and R. Pearl. (1929). “Report to the President of the National Academy of Sciences, February 9, In Congressional Record, 70th Congress, 2nd Session, 70, 4966–4967.

  • Gale, D. and L.S. Shapley. (1962). “College Admissions and the Stability of Marriage.” American Mathematical Monthly, 69, 9–15.

    Article  Google Scholar 

  • Gomory, R. (1963). “An Algorithm for Integer Solutions to Linear Programs.” In R.L. Graves and P. Wolfe (Eds.), Recent Advances in Mathematical Programming. New York: McGraw-Hill, pp. 269–302. First issued as Princeton-IBM Mathematics Research Project, Technical Report No. 1, November 17, 1958.

  • Huntington, E.V. (1928). “The Apportionment of Representatives in Congress.” Transactions of the American Mathematical Society, 30, 85–110.

    Google Scholar 

  • Milnor, J. (1954). “Games Against Nature.” In R.M. Thrall, C.H. Coombs, and R.L. Davis (Eds.), Decision Processes. New York: John Wiley & Sons, pp. 49–59.

  • Morse, M., J. von Neumann, and L.P. Eisenhart. (1948). Report to the President of the National Academy of Sciences, May 28, (mimeographed).

  • Pukelsheim, F. and C. Schuhmacher. (2004). “Das neue Zürcher Zuteilungsverfahren für Parlamentswahlen.” Aktuelle Juristichische Praxis, 5, 505–522.

    Google Scholar 

  • Ratier, G. (1996). “On the Stable Marriage Polytope.” Discrete Mathematics, 148, 141–159.

    Article  Google Scholar 

  • Roth, A.E. and M.A.O. Sotomayor. (1990). Two-sided Matching : A Study in Game Theoretic Modeling and Analysis. Cambridge and New York: Cambridge University Press.

  • Vande Vate, J.H. (1989). “Linear Programming Brings Marital Bliss.” Operations Research Letters, 8, 147–153.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balinski, M. Equitable representation and recruitment. Ann Oper Res 149, 27–36 (2007). https://doi.org/10.1007/s10479-006-0090-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-006-0090-z

Keywords

Navigation