Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it difficult to determine the prostate boundaries in ultrasound images. In this paper, we provide a systematic review of advances in the field of ultrasound prostate image segmentation. In particular, three categories of algorithms are reviewed and compared, including edge-based segmentation, region-based segmentation, and those based on specific theoretical models. To understand the state of the art of different segmentations of the prostate ultrasound images, we conduct a literature analysis and a series of comparisons between different algorithms. The features and limitations of each category of segmentation algorithms are further discussed. Finally, we identified promising research directions in advancing the segmentation algorithms for the processing of ultrasound prostate images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abolmaesumi R, Sirouspour MR (2004) Segmentation of prostate contours from ultrasound images. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, May 17–21, 2004. pp 517–520. https://doi.org/10.1109/ICASSP.2004.1326595

  • Akbari H, Fei B (2012) 3D ultrasound image segmentation using wavelet support vector machines. Med Phys 39(6):2972–2984. https://doi.org/10.1118/1.4709607

    Article  Google Scholar 

  • Angelova D, Mihaylova L (2011) Contour segmentation in 2D ultrasound medical images with particle filtering. Mach Vision Appl 22:551–561

    Google Scholar 

  • Arora K, Aggarwal AK (2018) Approaches for image database retrieval based on color, texture, and shape features. In: Anwar MI (ed) Handbook of research on advanced concepts in real-time image and video processing. IGI Global, Hershey, pp 28–50

    Chapter  Google Scholar 

  • Badiei S, Salcudean SE, Varah J, Morris WJ (2006) Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. In: Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, October 2006, pp 17–24. https://doi.org/10.1007/11866763_3

  • Betrouni N, Vermandel M, Pasquier D, Maouche S, Rousseau J (2005) Segmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filter. Comput Med Imaging Graph 29(1):43–51. https://doi.org/10.1016/j.compmedimag.2004.07.007

    Article  Google Scholar 

  • Bi H, Jiang YB, Tang H, Yang GY, Shu HZ, Dillenseger JL (2019) Fast and accurate segmentation method of active shape model with rayleigh mixture model clustering for prostate ultrasound images. Comput Meth Prog Bio 184:105097–105097. https://doi.org/10.1016/j.cmpb.2019.105097

    Article  Google Scholar 

  • Bridal SL, Correas J-M, Saied A, Laugier P (2003) Milestones on the road to higher resolution, quantitative, and functional ultrasonic imaging. Proc IEEE 91(10):1543–1561. https://doi.org/10.1109/JPROC.2003.817879

    Article  Google Scholar 

  • Carriere J, Rossa C, Sloboda R, Usmani N, Tavakoli M (2016) Real-time needle shape prediction in soft-tissue based on image segmentation and particle filtering. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada, July 12–15, 2016, pp 1204–1209. https://doi.org/10.1109/AIM.2016.7576934

  • Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277. https://doi.org/10.1109/83.902291

    Article  MATH  Google Scholar 

  • Chang C, Wu Y, Tsai Y (2009) Integrating the validation incremental neural network and radial-basis function neural network for segmenting prostate in ultrasound images. In: Proceedings of the 2009 Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, August 12–14, 2009, pp 198–203. https://doi.org/10.1109/HIS.2009.47

  • Cootes TF, Hill A, Taylor CJ, Haslam J (1993) The use of active shape models for locating structures in medical images. Image Vis Comput 12(6):355–365. https://doi.org/10.1007/BFb0013779

    Article  Google Scholar 

  • Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685. https://doi.org/10.1007/BFb0054760

    Article  Google Scholar 

  • Cosío FA, Acostab HG, Conde E (2015) Improved edge detection for object segmentation in ultrasound images using Active Shape Models. In: Proceedings of the 10th International Symposium on Medical Information Processing and Analysis. Cartagena de Indias, Colombia, January 28, 2015. Proc. SPIE, 9287, pp 9287141–6. https://doi.org/10.1117/12.2070559

  • Ding M, Galloway RL, Gyacskov I, Yuan X, Drangova M, Fenster A (2004) Slice-based prostate segmentation in 3D US images based on continuity constraint. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, January 17–18, 2004. pp 662–665. https://doi.org/10.1109/IEMBS.2005.1616500

  • Duran-Lopez L, Dominguez-Morales JP, Conde-Martin AF, Vicente-Diaz S, Linares-Barranco A (2020) PROMETEO: A CNN-based computer-aided diagnosis system for WSI prostate cancer detection. IEEE Access 8:128613–128628. https://doi.org/10.1109/ACCESS.2020.3008868

    Article  Google Scholar 

  • El-dahshan E, Redi A, Hassanien AE, Xiao K (2007) Accurate detection of prostate boundary in ultrasound images using biologically-inspired spiking neural network. In: Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, November 28-December 1, 2007, pp 308–311. https://doi.org/10.1109/ISPACS.2007.4445885

  • Georgieva V, Mihaylova A, Petrov P (2018) Prostate segmentation in ultrasound images using hybrid method. In: Proceedings of the International Conference on High Technology for Sustainable Development, Sofia, Bulgaria, June 11–14, 2018, pp 1–4. https://doi.org/10.1109/HiTech.2018.8566503

  • Ghanei A, Soltanian-Zadeh H, Ratkewicz A, Yin FF (2001) A three-dimensional deformable model for segmentation of human prostate from ultrasound images. Med Phys 28(10):2147–2153. https://doi.org/10.1118/1.1388221

    Article  Google Scholar 

  • Ghose S, Oliver A, Marti R, Llado X, Meriaudeau F (2011) Prostate segmentation with local binary patterns guided active appearance models. Proc SPIE 7962(4):140–144. https://doi.org/10.1117/12.877955

    Article  Google Scholar 

  • Ghose S, Mitra J, Oliver A, Marti R, Mériaudeau F (2012a) Spectral clustering of shape and probability prior models for automatic prostate segmentation. In: Proceedings of the 2012a Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, August 28 - September 1, 2012a, pp 2335–2338. https://doi.org/10.1109/EMBC.2012.6346431

  • Ghose S, Oliver A, Martí R, Lladó X, Freixenet J, Mitra J, Vilanova JC, Comet-Batlle J, Meriaudeau F (2012b) Statistical shape and texture model of quadrature phase information for prostate segmentation. Int J CARS 7:43–55. https://doi.org/10.1007/s11548-011-0616-y

    Article  Google Scholar 

  • Ghose S, Oliver A, Martí R, Lladó X, Vilanova JC, Freixenet J, Mitra J, Sidibé D, Meriaudeau F (2012c) A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput Meth Prog Bio 108(1):262–287. https://doi.org/10.1016/j.cmpb.2012.04.006

    Article  Google Scholar 

  • Ghose S, Oliver A, Mitra J, Martí R, Meriaudeau F (2013) Supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Med Image Anal 17(6):587–600. https://doi.org/10.1016/j.media.2013.04.001

    Article  Google Scholar 

  • Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging 23(3):340–349. https://doi.org/10.1109/TMI.2004.824237

    Article  Google Scholar 

  • Grand challenge (2012) Prostate MR image segmentation Oct. Available: http://promise12.grand-challenge.org/

  • Houshmand K, Tizhoosh HR (2008) Increasing segmentation accuracy in ultrasound imaging using filtering and snakes. In: Proceedings of the Conference on Electrical & Computer Engineering. Niagara Falls, ON, Canada, May 4–7, 2008. pp 1333–1336. https://doi.org/10.1109/CCECE.2008.4564756

  • Hu N, Downey DB, Fenster A, Ladak HM (2002) Prostate surface segmentation from 3D ultrasound images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, July 7–10, 2002, pp 613–616. https://doi.org/10.1109/ISBI.2002.1029332

  • Huynen AL, Giesen RJB, Rosette JJMCH, Aarnink RG, Debruyne FMJ, Wijkstra H (1994) Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. Ultrasound Med Biol 20(1):1–10. https://doi.org/10.1016/0301-5629(94)90011-6

    Article  Google Scholar 

  • Huang XF, Chen M, Liu PZ (2019) Recognition of transrectal ultrasound prostate image based on HOG-LBP. In: Proceedings of the IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification, Xiamen, China, October 25–27, 2019, pp 183–187. https://doi.org/10.1109/ICASID.2019.8925236

  • Hodge AC, Fenster A, Downey DB, Ladak HM (2006) Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Comput Methods Programs Biomed 84(2–3):99–113. https://doi.org/10.1016/j.cmpb.2006.07.001

    Article  Google Scholar 

  • Jaouen V, Bert J, Mountris KA, Boussion N, Visvikis D (2019) Prostate volume segmentation in TRUS using hybrid edge-bhattacharyya active surfaces. IEEE t Bio-Med Eng 66(4):920–933. https://doi.org/10.1109/TBME.2018.2865428

    Article  Google Scholar 

  • Jing Y, Duncan JS (2004) 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets. Med Image Anal 8(3):285–294. https://doi.org/10.1016/j.media.2004.06.008

    Article  Google Scholar 

  • Kachouie NN, Fieguth P (2007) A medical texture local binary pattern for TRUS prostate segmentation. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 22–26, 2007, pp 5605–5608. https://doi.org/10.1109/IEMBS.2007.4353617

  • Kachouie NN, Fieguth P, Rahnamayan S (2006) An elliptical level set method for automatic TRUS prostate image segmentation. In: Proceedings of the 2006 IEEE International Symposium on Signal Processing and Information Technology, Vancouver, BC, Canada, August 27–30, 2006, pp 191–196. https://doi.org/10.1109/ISSPIT.2006.270795

  • Karimi D, Salcudean SE (2020) Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans Med Imaging 39(2):499–513. https://doi.org/10.1109/TMI.2019.2930068

    Article  Google Scholar 

  • Karimi D, Nir G, Fazli L, Black PC, Goldenberg L, Salcudean SE (2020) Deep learning-based gleason grading of prostate cancer from histopathology images—role of multiscale decision aggregation and data augmentation. IEEE J Biomed Health 24(5):1413–1426. https://doi.org/10.1109/JBHI.2019.2944643

    Article  Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331. https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  • Kaur A, Chauhan APS, Aggarwal AK (2021) An automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional network. Expert Syst Appl 186(30):115686. https://doi.org/10.1016/j.eswa.2021.115686

    Article  Google Scholar 

  • Kim SG, Seo YG (2013) A TRUS prostate segmentation using Gabor texture features and snake-like contour. J Inf Process Syst 9(1):193–198. https://doi.org/10.3745/JIPS.2013.9.1.103

    Article  Google Scholar 

  • Knoll C, Alcaniz M, Grau V, Monserrat C, Juan MC (1999) Outlining of the prostate using snakes with shape restrictions based on the wavelet transform (Doctoral Thesis: Dissertation). Pattern Recogn 32:1767–1781

    Article  Google Scholar 

  • Kwoh CK, Teo MY, Ng WS, Tan SN, Jones LM (1998) Outlining the prostate boundary using the harmonics method. Med Biol Eng Comput 36(6):768–771. https://doi.org/10.1007/BF02518882

    Article  Google Scholar 

  • Ladak HM, Mao F, Wang YQ, Downey DB, Steinman DA, Fenster A (2000) Prostate boundary segmentation from 2D ultrasound images. Med Phys 27(8):1777–1788. https://doi.org/10.1118/1.1286722

    Article  Google Scholar 

  • Layek K, Basak B, Samanta S, Maity SP, Barui A (2019) Segmentation of prostate sonoelastography images using quantitative elasticity measures. In: Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, July 6–8, 2019, pp 1–6. https://doi.org/10.1109/ICCCNT45670.2019.8944847

  • Lei Y, Tian SB, He XX, Wang TH, Wang B, Patel P, Jani AB, Mao H, Curran WJ, Liu T, Yang XF (2019) Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net. Med Phys 46(7):3194–3206. https://doi.org/10.1002/mp.13577

    Article  Google Scholar 

  • Lei Y, Wang TH, Roper J, Jani AB, Patel SA, Curran WJ, Patel P, Liu T, Yang XF (2021) Male Pelvic multi-organ segmentation on transrectal ultrasound using Anchor free mask CNN. Med Phys. https://doi.org/10.1002/mp.14895

    Article  Google Scholar 

  • Li X, Li H (2018) A visual analysis of research on information security risk by using CiteSpace. IEEE Access 6:63243–63257. https://doi.org/10.1109/ACCESS.2018.2873696

    Article  Google Scholar 

  • Li B, Patil AV, Hossack JA, Acton ST (2007) 3D segmentation of the prostate via poisson inverse gradient initialization. In: Proceedings of the IEEE International Conference on Image Processing. San Antonio, TX, USA, September 16–October 19, 2007, pp 25–28. https://doi.org/10.1109/ICIP.2007.4379756

  • Li CM, Kao CY, Gore JC, Ding ZH (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949. https://doi.org/10.1109/TIP.2008.2002304

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Li C, Fedorov A, Kapur T, Yang X (2016) Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges. Med Phys 43(6):3090–3103. https://doi.org/10.1118/1.4950721

    Article  Google Scholar 

  • Li X, Li CM, Liu HR, Yang XP (2019) A modifified level set algorithm based on point distance shape constraint for lesion and organ segmentation. Phys Med 57:123–136. https://doi.org/10.1016/j.ejmp.2018.12.03

    Article  Google Scholar 

  • Liu YJ, Ng WS, Teo MY, Lim HC (1997) Computerised prostate boundary estimation of ultrasound images using radial bas-relief method. Med Biol Eng Comput 35(5):445–454. https://doi.org/10.1007/BF02525522

    Article  Google Scholar 

  • Mahdavi S, Salcudean SE (2008) 3D prostate segmentation based on ellipsoid fitting, image tapering and warping. In: Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, August 20–25, 2008, pp 2988–2991. https://doi.org/10.1109/IEMBS.2008.4649831

  • Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE (2011) Semi-automatic segmentation for prostate interventions. Brachytherapy 15(2):226–237. https://doi.org/10.1016/j.media.2010.10.002

    Article  Google Scholar 

  • Mahdavi SS, Moradi M, Morris WJ, Goldenberg SL, Salcudean SE (2012) Fusion of ultrasound B-mode and vibro-elastography images for automatic 3-D segmentation of the prostate. IEEE Trans Med Imaging 31(11):2073–2082. https://doi.org/10.1109/TMI.2012.2209204

    Article  Google Scholar 

  • Manavalan R, Thangavel K (2011) TRUS image segmentation using morphological operators and DBSCAN clustering. In: Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, December 11–14, 2011, pp 898–903. https://doi.org/10.1109/WICT.2011.6141367

  • Medina R, Bravo A, Windyga P, Toro J, Yan P, Onik G (2005) A 2-D active appearance model for prostate segmentation in ultrasound images. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, January 17–18, 2005, pp 3363–3366. https://doi.org/10.1109/IEMBS.2005.1617198

  • MICCAI (2009) 2009 Prostate segmentation challenge MICCAI. http://wiki.namic.org/Wiki/index.php (accessed 1 Apr 11)

  • Mohamed SS, Youssef AM, El-Saadany EF, Salama MMA (2006) Prostate tissue characterization using TRUS image spectral features. In: Proceedings of the International Conference Image Analysis & Recognition, Berlin, Heidelberg, 2006, pp 589–601. https://doi.org/10.1007/11867661_5

  • Morris WJ, Keyes M, Spadinger I, Kwan W, Liu M, Mckenzie M, Pai H, Pickles T, Tyldesley S (2013) Population-based 10-year oncologic outcomes after low-dose-rate brachytherapy for low-risk and intermediate-risk prostate cancer. Cancer 119(8):1537–1546. https://doi.org/10.1002/cncr.27911

    Article  Google Scholar 

  • Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010. https://doi.org/10.1109/TMI.2006.877092

    Article  Google Scholar 

  • Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, Abolmaesumi P (2015) A multi-atlas-based segmentation framework for prostate brachytherapy. IEEE Trans Med Imaging 34(4):950–961. https://doi.org/10.1109/TMI.2014.2371823

    Article  Google Scholar 

  • Nouranian S, Ramezani M, Spadinger I, Morris JW, Salcudean ES (2016) Learning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapy. IEEE Trans Med Imaging 35(3):921–931. https://doi.org/10.1109/TMI.2015.2502540

    Article  Google Scholar 

  • Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49. https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  • Pathak SD, Haynor DR, Kim Y (2000) Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans Med Imaging 19(12):1211–1219. https://doi.org/10.1109/42.897813

    Article  Google Scholar 

  • Prabhakar SK, Lee SW (2020) Transformation based tri-level feature selection approach using wavelets and swarm computing for prostate cancer classification. IEEE Access 8:127462–127476. https://doi.org/10.1109/ACCESS.2020.3006197

    Article  Google Scholar 

  • Prater JS, Richard WD (1992) Segmenting ultrasound images of the prostate using neural networks. Ultrason Imaging 14(2):159–185. https://doi.org/10.1016/0161-7346(92)90005-G

    Article  Google Scholar 

  • Qiu W, Yuan J, Ukwatta E, Sun Y, Rajchl M, Fenster A (2014) Prostate segmentation: an Efficient convex optimization approach with axial symmetry using 3-D TRUS and MR images. IEEE Trans Med Imaging 33(4):947–960. https://doi.org/10.1109/TMI.2014.2300694

    Article  Google Scholar 

  • Sabourin GR, Albu AB, Laurendeau D, Beaulieu L (2008) Automatic contour retrieval in annotated TRUS prostate images. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, May 14–17, 2008. pp 85–88. https://doi.org/10.1109/ISBI.2008.4540938

  • Sahba F, Tizhoosh HR, Salama MM (2005a) A coarse-to-fine approach to prostate boundary segmentation in ultrasound images. Biomed Eng Online 4(58):1–13. https://doi.org/10.1186/1475-925X-4-58

    Article  Google Scholar 

  • Sahba F, Tizhoosh HR, Salama MMA (2005b) Segmentation of prostate boundaries using regional contrast enhancement. In: Proceedings of the IEEE International Conference on Image Processing 2005b, Genova, Italy, September 14–14, 2005b. pp 1266–1269. https://doi.org/10.1109/ICIP.2005.1530293

  • Sahba F, Tizhoosh HR, Salama MMA (2008) Application of reinforcement learning for segmentation of transrectal ultrasound images. BMC Med Imaging 8(8):1–10

    Google Scholar 

  • Saroul L, Bernard O, Vray D, Friboulet D (2008) Prostate segmentation in echographic images: a variational approach using deformable super-ellipse and rayleigh distribution. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Villeurbanne, France, May 14–17, 2008, pp 129–132. https://doi.org/10.1109/ISBI.2008.4540949

  • Sarti A, Corsi C, Mazzini E, Lamberti C (2005) Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Trans Ultrason Ferr 52(6):947–960. https://doi.org/10.1109/CIC.2004.1442939

    Article  Google Scholar 

  • Sedelaar, J. P. M., Rosette, J. J. M. C. H., Beerlage, H. P., Wijkstra, H., Debruyne, F. M. J., Aarnink, R. G., 1999. Transrectal ultrasound imaging of the prostate: review and perspectives of recent developments. Prostate Cancer P. D. 2 (5/6), 241–252. doi:https://doi.org/10.1038/sj.pcan.4500326.

  • Shao F, Ling KV, Ng WS (2002). 3D prostate surface detection from ultrasound images based on level set method. In: Proceedings of the Medical Image Computing & Computer-assisted Intervention-Miccai, International Conference, Tokyo, Japan, 2002, pp 389-396

  • Shao F, Ling KV, Ng WS, Wu RY (2003) Prostate boundary detection from ultrasonographic images. J Ultras Med 22(6):605–623. https://doi.org/10.7863/jum.2003.22.6.605

    Article  Google Scholar 

  • Shao Y, Wang J, Wodlinger B, Salcudean SE (2020) Improving prostate cancer (PCa) classification performance by using three-player minimax game to reduce data source heterogeneity. IEEE Trans Med Imaging 39(10):1–11. https://doi.org/10.1109/TMI.2020.2988198

    Article  Google Scholar 

  • Shen DG, Zhan YQ, Davatzikos C (2003) Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging 22(4):539–551. https://doi.org/10.1109/TMI.2003.809057

    Article  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA-A Cancer J Clin 70(1):7–33. https://doi.org/10.3322/caac.21654

    Article  Google Scholar 

  • Silva GLFD, Franca JVF, Diniz PS, Silva AC, Cavalcanti EAA (2020) Automatic prostate segmentation on 3D MRI scans using convolutional neural networks with residual connections and superpixels. In: Proceedings of the International Conference on Systems, Signals and Image Processing, Niteroi, Brazil, July 1–7, 2020, pp 51–56. https://doi.org/10.1109/IWSSIP48289.2020.9145218

  • Singh RP, Gupta S, Acharya UR (2017) Segmentation of prostate contours for automated diagnosis using ultrasound images: A survey. J Comput Sci-Neth 21:223–231. https://doi.org/10.1016/j.jocs.2017.04.016

    Article  Google Scholar 

  • Sloun RJG, Wildeboer RR, Postema AW, Mannaerts CK, Gayer M, Wijkstra H, Mischi M (2018) Zonal Segmentation in Transrectal Ultrasound Images of the Prostate Through Deep Learning. In: Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, October 22–25, 2018, pp 1–4. https://doi.org/10.1109/ULTSYM.2018.8580157

  • Song J, Shi Y (2015) Rough location of the prostate TRUS images. In: Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, August 8–10, 2015, pp 881–885. https://doi.org/10.1109/ICInfA.2015.7279410

  • Tutar IB, Pathak SD, Gong L, Cho PS, Wallner K, Kim Y (2006) Semiautomatic 3-D prostate segmentation from trus images using spherical harmonics. IEEE t Med Imaging 25(12):1645–1654. https://doi.org/10.1109/TMI.2006.884630

    Article  Google Scholar 

  • Vafaie R, Alirezaie J, Babyn P (2012) Fully automated model-based prostate boundary segmentation using Markov random field in ultrasound images. In: Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, December 3–5, 2012. pp 1–8. https://doi.org/10.1109/DICTA.2012.6411706

  • Waine M, Rossa C, Sloboda R, Usmani N, Tavakoli M (2015) 3D needle shape estimation in TRUS-guided prostate brachytherapy using 2D ultrasound images. IEEE J Biomed Health 20(6):1621–1631. https://doi.org/10.1109/JBHI.2015.2477829

    Article  Google Scholar 

  • Wang Y, Cardinal HN, Downey DB, Fenster A (2003) Semiautomatic three-dimensional segmentation of the prostate using two-dimensional ultrasound images. Med Phys 30(5):887–897. https://doi.org/10.1006/jcat.1999.2746

    Article  Google Scholar 

  • Wang Y, Dou H, Hu X, Zhu L, Zhu L, Yang X, Xu M, Qin J, Heng PA, Wang T (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. In: Proceedings of the IEEE Transactions on Medical Imaging 38 (12), pp 2768–2778. https://doi.org/10.1109/TMI.2019.2913184

  • Wang WR, Pan B, Yan JW, Fu YL, Liu YJ (2021) MRI and TRUS prostate image segmentation based on improved level set for robotic prostate biopsy navigation. Int J Med Robot Comput Assist Surg 17(1):1–14. https://doi.org/10.1002/rcs.2190

    Article  Google Scholar 

  • Wildeboer RR, Mannaerts CK, Sloun RJG, Wijkstra H, Mischi M (2019) Machine learning for multiparametric ultrasound classification of prostate cancer using B-mode, Shear-wave elastography, and contrast-enhanced ultrasound radiomics. In: Proceedings of the IEEE International Ultrasonics Symposium, Glasgow, Scotland, October6–9, 2019. pp 1902–1905. https://doi.org/10.1109/ULTSYM.2019.8925823

  • Wong A, Scharcanski J (2011) Fisher-Tippett region-merging approach to transrectal ultrasound prostate lesion segmentation. IEEE Trans Inf Technol Biomed 15(6):900–907. https://doi.org/10.1109/TITB.2011.2163724

    Article  Google Scholar 

  • Wu RY, Ling KV, Ng WS (2000) Automatic prostate boundary recognition in sonographic images using feature model and genetic algorithm. J Am Inst Ultrasound Med 19(11):771–782. https://doi.org/10.1067/mnc.2000.109970

    Article  Google Scholar 

  • Wu PF, Liu YG, Li YZ, Shi YT (2013) TRUS image segmentation with non-parametric kernel density estimation shape prior. Biomed Signal Proces 8(6):764–771. https://doi.org/10.1016/j.bspc.2013.07.002

    Article  Google Scholar 

  • Wu P, Liu Y, Li Y, Liu B (2015) Robust Prostate Segmentation Using Intrinsic Properties of TRUS Images. IEEE Trans Med Imaging 34(6):1321–1335. https://doi.org/10.1109/TMI.2015.2388699

    Article  Google Scholar 

  • Xu RS (2010) Information tracking approach to segmentation of ultrasound imagery of the prostate. IEEE Trans Ultrason Ferr 57(8):1748–1761. https://doi.org/10.1109/TUFFC.2010.1613

    Article  Google Scholar 

  • Yan P, Xu S, Turkbey B, Kruecker J (2010) Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng 57(5):1158–1166. https://doi.org/10.1109/TBME.2009.2037491

    Article  Google Scholar 

  • Yan P, Xu S, Turkbey B, Kruecker J (2011) Adaptively learning local shape statistics for prostate segmentation in ultrasound. IEEE Trans Biomed Eng 58(3):633–641. https://doi.org/10.1109/TBME.2010.2094195

    Article  Google Scholar 

  • Yang X, Fei B (2012) 3D prostate segmentation of ultrasound images combining longitudinal medical imaging. Proc SPIE Int Soc Opt Eng. https://doi.org/10.1117/12.912188

    Article  Google Scholar 

  • Yang X, Rossi PJ, Jani AB, Hui M Tian L (2016) 3d transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework. In: Proceedings of the Proceedings of Spie the International Society for Optical Engineering, Proc. SPIE 9784, pp 97842F1–7. https://doi.org/10.1117/12.2216396

  • Yu Y, Cheng J, Li J, Chen W, Chiu B (2014) Automatic prostate segmentation from transrectal ultrasound images. In: Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, October 22–24, 2014. pp 117–120. https://doi.org/10.1109/BioCAS.2014.6981659

  • Yu Y, Chen Y, Chiu B (2016) Fully automatic prostate segmentation from transrectal ultrasound images based on radial bas-relief initialization and slice-based propagation. Comput Biol Med 74(1):74–90. https://doi.org/10.1016/j.compbiomed.2016.05.002

    Article  Google Scholar 

  • Yu M, Dong Y, Hu Y (2017) Analysis of research hotspots and trend of CiteSpace-based blended learning. China Med Educ Technol 31(6):644–650

    Google Scholar 

  • Yu X, Lou B, Shi B, Winkel D, Szolar D (2020) False positive reduction using multiscale contextual features for prostate cancer detection in multi-parametric MRI scans. In: Proceedings of the IEEE 17th International Symposium on Biomedical Imaging, Iowa City, USA, April 3–7, 2020, pp 1355–1359. https://doi.org/10.1109/ISBI45749.2020.9098338

  • Zaim A (2005) Automatic segmentation of the prostate from ultrasound data using feature-based self organizing map. Image Anal. https://doi.org/10.1007/11499145_127

    Article  Google Scholar 

  • Zaim A (2008a) An edge-based approach for segmentation of prostate ultrasonic images using phase symmetry. In: Proceedings of the 2008a 3rd International Symposium on Communications, Control and Signal Processing, St, Julians, March 12–14, 2008a. pp 10–13. https://doi.org/10.1109/ISCCSP.2008.4537183

  • Zaim A (2008b) FSM: A new finite sphere method for modeling 3D geometry of the prostate. In: Proceedings of the 2008b 15th IEEE International Conference on Image Processing, San Diego, CA, USA, October 12–15, 2008b, pp 2956–2959. https://doi.org/10.1109/ICIP.2008.4712415

  • Zaim A, Yi T, Keck R (2007) Feature-based classification of prostate ultrasound images using Multiwavelet and Kernel Support Vector Machines. In: Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, August 12–17, 2007, pp 278–281. https://doi.org/10.1109/IJCNN.2007.4370968

  • Zettinig O, Shah A, Hennersperger C, Eiber M, Navab N (2015) Multimodal image-guided prostate fusion biopsy based on automatic deformable registration. Int J CARS 10(12):1997–2007. https://doi.org/10.1007/s11548-015-1233-y

    Article  Google Scholar 

  • Zhan YQ, Shen DG (2006) Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method. IEEE Trans Med Imaging 25(3):256–272. https://doi.org/10.1109/TMI.2005.862744

    Article  Google Scholar 

  • Zhang Y, Qian W, Sankar R (2005) Prostate boundary detection in transrectal ultrasound images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, & Signal Processing, Philadelphia, PA, USA, March 23–23, 2005. pp 617–620. https://doi.org/10.1109/ICASSP.2005.1416379.

  • Zhu Y, Williams S, Zwiggelaar R (2006) Computer technology in detection and staging of prostate carcinoma: a review Med. Image Anal 10(2):178–199. https://doi.org/10.1016/j.media.2005.06.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (Grant No. LH2021E081), the Fundamental Research Foundation for Universities of Heilongjiang Province (Grant No. LGYC2018JQ016), China Postdoctoral Science Foundation Special Funded Project (Grant No. 2018T110313), and Heilongjiang Postdoctoral Science Foundation Special Funded Project (Grant No. LBH-TZ1705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingang Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Guo, Y., Bi, Z. et al. Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms. Artif Intell Rev 56, 615–651 (2023). https://doi.org/10.1007/s10462-022-10179-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10179-4

Keywords

Navigation