Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A review of algorithms to computing irreducible testors applied to feature selection

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Feature selection is an important task in the areas of pattern recognition and data mining. Various approaches to feature selection have been developed. In particular, this paper focuses on the algorithms for computing irreducible testors, which have been used to solve feature selection problems. The calculation of irreducible testors is an expensive computational process; the complexity of the algorithms to calculate the complete set of irreducible testors exponentially depends on the number of characteristics that describe the objects in the problem. To improve the execution time of these algorithms, different alternatives have been developed, such as parallel implementations, hardware-software implementation, rearrangement of the data, as well as heuristics to generate just an irreducible testor or a subset of the entire set of irreducible testors, among other strategies. This paper presents a review of the literature on irreducible testors, with the aim of providing a guide for researchers working in the areas of pattern recognition and data mining, interested in feature selection, using heterogeneous data and possibly missing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aguila L, Ruiz J (1984) MB algorithm for k-valued information elaboration on pattern recognition problems. Ciencias Mat J V(3):89–101

    Google Scholar 

  • Alba-Cabrera E, Godoy-Calderon S, Ibarra-Fiallo J (2016) Generating synthetic test matrices as a benchmark for the computational behavior of typical testor-finding algorithms. Pattern Recogn Lett 80:46–51

    Article  Google Scholar 

  • Alba-Cabrera E, Godoy-Calderon S, Lazo-Cortés MS, Martínez-Trinidad JF, Carrasco-Ochoa JA (2019) On the relation between the concepts of irreducible testor and minimal transversal. IEEE Access 7:82809–82816

    Article  Google Scholar 

  • Alba-Cabrera E, Ibarra-Fiallo J, Godoy-Calderon S (2013) A theoretical and practical framework for assessing the computational behavior of typical testor-finding algorithms. In: 18th Iberoamerican congress CIARP. LNCS, vol. 8258. Springer, New York, pp 351–358

  • Alba-Cabrera E, Ibarra-Fiallo J, Godoy-Calderon S, Cervantes-Alonso F (2014) YYC: a fast performance incremental algorithm for finding typical testors. In: 19th Iberoamerican congress CIARP. LNCS, vol. 8827. Springer, New York, pp 416–423

  • Alba E, Santana R, Ochoa A, Lazo M (2000) Finding typical testors by using an evolutionary strategy. In: Proceedings of V Iberoamerican workshop on pattern recognition, pp 267–278

  • Armstrong DB (1966) On finding a nearly minimal set of fault detection tests for combinatorial logic nets. IEEE Trans Electron Comput 15:66–73

    Article  MATH  Google Scholar 

  • Asaithambi A, Valev V (2004) Construction of all non-reducible descriptors. Pattern Recogn 37(9):1817–1823

    Article  MATH  Google Scholar 

  • Aslanyan L, Ryazanov V, Sahakyan H (2015) Testor and logic separation in pattern recognition. Math Problems Comput Sci 44:33–41

    Google Scholar 

  • Ayaquica-Martinez I, Jimenez-Jacinto V (1997) A new algorithm of outer scale for the generation of typical testors. In: Proceedings of the Iberoamerican workshop on pattern recognition (TIARP 97), pp 141–148

  • Borja-Cazales D, Diaz-Garcia M (2014) Differential evolution and particle swarm algorithms for calculate typical testors. BSc thesis, National Polytechnic Institute, Mexico

  • Bravo A (1983) Algorithm CT for compute of typical test of a k-valued matrix. Ciencias Mat J IV(2):123–144

    MATH  Google Scholar 

  • Carrasco-Ochoa J, Martinez-Trinidad J (2004) Feature selection for natural disaster texts classification using testors. In: Proc. of fifth int. conf. on intelligent data engineering and automated learning. LCNS, vol. 3177. Springer, New York, pp 424–429

  • Chegis IA, Yablonskii SV (1955) On tests for electric circuits. Uspieji Matematicheskij Nauk 4(66):182–184

    Google Scholar 

  • Chikalov I, Lozin V, Lozina I, Moshkov M, Nguyen HS, Skowron A, Zielosko B (2012) Three approaches to data analysis: test theory, rough sets and logical analysis of data, vol 41. Springer Science & Business Media, New York, pp 3–38

  • Cumplido R, Carrasco-Ochoa A, Feregrino C (2006) On the design and implementation of a high performance configurable architecture for testor identification. In: Proc. 10th Iberoamerican congress CIARP. LNCS, vol 4225. Springer, New York, pp 665–673

  • Dmitriev A, Zhuravlev I, Krendeliev F (1966) About mathematical principles and phenomena classification. Diskretni Analiz 7:3–15

    Google Scholar 

  • Eldred RD (1959) Test routines based on symbolic logic statements. J ACM 6(1):33–36

    Article  MATH  Google Scholar 

  • Freeman C, Kulic D, Basir O (2015) An evaluation of classifier-specific filter measure performance for feature selection. Pattern Recogn 48(5):1812–1826

    Article  Google Scholar 

  • Gallegos-Acosta A (2018) Identification of risk factors in medical pathologies by means of feature selection characteristics. MsC. Thesis, Autonomous University of Aguascalientes, Mexico

  • Gallegos A, Torres D, Alvarez F, Torres A (2016) Feature subset selection and typical testors applied to breast cancer cells. Res Comput Sci 121:151–163

    Article  Google Scholar 

  • Gonzalez-Guevara V, Godoy-Calderon S, Alba-Cabrera E, Ibarra-Fiallo J (2015) A mixed learning strategy for finding typical testors in large datasets. In: 20th Iberoamerican congress CIARP. LNCS, vol 9423. Springer, New York, pp 716–723

  • Hall MA (2000) Correlation-based feature selection for discrete and numeric class machine learning, In: Proc. 17th int. conf. machine learning, pp 359–366

  • Jimenez-Jacinto V (1995) Feature selection with the algorithm REC. BSc. thesis on applied mathematics and computation, UNAM, Mexico

  • Journal Impact Factor (2020) Journal citation reports science edition. Clarivate analytics

  • Kohavi R, Jhon G (1997) Wrappers for feature subset selection. Artif Intell 97:273–324

    Article  MATH  Google Scholar 

  • Lazo-Cortes M, Ruiz-Shulcloper J, Alba-Cabrera E (2001) An overview of the evolution of the concept of testor. Pattern Recogn 34(4):753–762

    Article  MATH  Google Scholar 

  • Lazo-Cortés MS, Martínez-Trinidad JF, Carrasco-Ochoa JA, Sanchez-Diaz G (2015) On the relation between rough set reducts and typical testors. Inf Sci 294:152–163

    Article  MathSciNet  MATH  Google Scholar 

  • Li F, Zhu Q (2011) Dcoument clustering in research literature based on NMF and testor theory. J Softw 6(1):78–82

    Article  Google Scholar 

  • Lias-Rodriguez A, Pons-Porrata A (2009) BR: a new method for computing all typical testors. In: 14th Iberoamerican congress CIARP. LNCS, vol. 5856. Springer, New York, pp 433–440

  • Lias-Rodriguez A, Sanchez-Diaz G (2013) An algorithm for computing typical testors based on gaps and reduction of columns. Int J Pattern Recognit Artif Intell 27(8):1–18

    Article  MathSciNet  Google Scholar 

  • Lopez-Perez S, Lazo-Cortes M, Estrada-Garcia H (1997) Medical electrodiagnostic using pattern recognition tools. In: Proceedings of the Iberoamerican workshop on pattern recognition (TIARP 97), pp 237–244

  • McMahon A, Lewis E, Buniello A, Cerezo M, Hall P, Sollis E, Parkinson H, Hindorff L, Harris L, MacArthur J (2021) Sequencing-based genome-wide association studies reporting standards. Cell Genom 1(1):1–29

    Google Scholar 

  • Mierswa I, Michael W (2006) Information preserving multiobjective feature selection for unsupervised learning. In: Proceedings of the genetic and evolutionary computation conference. ACM Press, pp 1545–1552

  • Morales-Escobar J, Roblero-Aguilar S, Guevara-Cruz E, Orozco-Aguirre H (2017) The use of typical testors for determinate the impact of contents in subjects of vocational training. Oper Res J 3:299–304

    Google Scholar 

  • Ochoa J, Valdes M, Moctezuma I, Ayala C (2008) Dimension reduction in image databases using the logical combinatorial approach. In: Innovations and advances techniques in systems, computing sciences and software engineering. Springer, New York, pp 260–265

  • Ortiz-Posadas M, Martinez-Trinidad J, Ruiz-Shulcloper J (2001) A new approach to differential diagnosis of diseases. Int J Biomed Comput 40(3):179–185

    Article  Google Scholar 

  • Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht, MA

    Book  MATH  Google Scholar 

  • Piza-Davila I, Sanchez-Diaz G, Aguirre-Salado C, Lazo-Cortes M (2015) A parallel hill-climbing algorithm to generate a subset of irreducible testors. Appl Intell 42:622–641

    Article  Google Scholar 

  • Piza-Davila I, Sanchez-Diaz G, Lazo-Cortes M, Rizo-Dominguez L (2017) A CUDA-based hill-climbing algorithm to find irreducible testors from a training matrix. Pattern Recogn Lett 95:22–28

    Article  Google Scholar 

  • Piza-Davila I, Sanchez-Diaz G, Lazo-Cortes M, Noyola-Medrano C (2018) Enhancing the performance of YYC algorithm useful to generate irreducible testors. Int J Pattern Recognit Artif Intell 32(1):1–18

    Article  Google Scholar 

  • Piza-Davila I, Sanchez-Diaz G, Lazo-Cortes M, Villalon-Turrubiates I (2020) An algorithm for computing minimum-length irreducible testors. IEEE Access 8:56312–56320

    Article  Google Scholar 

  • Pons-Porrata A, Ruiz-Shulcloper J, Berlanga-Llavori R (2003) A method for the automatic summarization of topic-based clusters of documents. In: Proceedings of VIII Iberoamerican conference on pattern recognition. LNCS, vol 2905. Springer, New York, pp 596–603

  • Pons-Porrata A, Gil-Garcia R, Berlanga-Llavori R (2007) Using typical testors for feature selection in text categorization. In: Proceedings of XII Iberoamerican conference on pattern recognition. LNCS, vol 4756. Springer, New York, pp 643–652

  • Rissanen R (1978) Modeling by shortest data description. Automatica 14(5):465–471

    Article  MATH  Google Scholar 

  • Rodriguez-Diez V, Martinez-Trinidad F, Carrasco-Ochoa J, Lazo-Cortes M, Feregrino-Uribe C, Cumplido R (2015) A fast hardware software platform for computing irreducible testors. Expert Syst Appl 42:9612–9619

    Article  Google Scholar 

  • Rojas A, Cumplido R, Carrasco-Ochoa A, Feregrino C, Martínez-Trinidad J (2012) Hardware-software platform for computing irreducible testors. Expert Syst Appl 39:2203–2210

    Article  Google Scholar 

  • Rojas-Delgado J (2016) Feature selection on pap-smear data using heuristic information. Cuban J Inf Sci 10(2):73–88

    Google Scholar 

  • Roth JP (1966) Diagnosis of automata failures: a calculus and a method. IBM J Res Dev 10:278–291

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz-Shulcloper J, Abidi M (2002) Logical combinatorial pattern recognition: a review. In: Recent research developments in pattern recognition. Transword Research Networks, India, pp 133–176

  • Ruiz-Shulcloper J, Bravo-Martinez A, Aguila-Feros L (1985) Algorithms BT and TB for compute all typical testors. Ciencias Mat J VI:11–18

    Google Scholar 

  • Ruiz-Shulcloper J, Lazo-Cortes M (1999) Mathematical algorithms for the supervised classification based on fuzzy partial precedence. Math Comput Model 29:111–119

    Article  MathSciNet  MATH  Google Scholar 

  • Saeys Y, Degroeve S, Van de Peer Y (2004) Digging into acceptor splice site prediction: an iterative feature selection approach. In: Proceedings of principles and practice of knowledge discovery in databases, pp 386–397

  • Sanchez-Diaz G (1997) Develoment and programming of efficient algorithms (sequential and parallel) for generated typical testors of a basic matrix. MsC. thesis, Autonomous University of Puebla, Mexico

  • Sanchez-Diaz G, Diaz-Sanchez G, Mora-Gonzalez M, Piza-Davila I, Aguirre-Salado C, Huerta-Cuellar G, Reyes-Cardenas O, Cardenas-Tristan A (2014) An evolutionary algorithm with acceleration operator to generate a subset of typical testors. Pattern Recogn Lett 41:34–42

    Article  Google Scholar 

  • Sanchez-Diaz G, Lazo-Cortes M (2007) CT-EXT: an algorithm for computing typical testor set. In: 11th Iberoamerican congress CIARP. LNCS, vol. 4756. Springer, New York, pp 506–514

  • Sanchez-Diaz G, Lazo-Cortes M (2002) Modifications to algorithm BT for improve their execution time. Ciencias Mat J 20(2):129–136

    Google Scholar 

  • Sanchez-Diaz G, Lazo-Cortes M, Fuentes-Chavez O (1999) Genetic algorithm to calculate typical testors of minimal cost. In: IV Iberoamerican symposium on pattern recognition, pp 207–212

  • Sanchez-Diaz G, Lazo-Cortes M, Piza-Davila I (2012) A fast implementation for the typical testor property identification based on an accumulative binary tuple. Int J Comput Intell Syst 5(6):1025–1039

    Article  Google Scholar 

  • Santiesteban-Alganza Y, Pons-Porrata A (2003) LEX: a new algorithm to generate typical testors. Ciencias Mat J 21(1):85–95

    Google Scholar 

  • Santos J, Carrasco A, Martinez J (2004) Feature selection using typical testors applied to estimation to stellar parameters. Comput Sistemas J 8(1):15–23

    Google Scholar 

  • Tonkin E, Tourte G (2016) Working with text: tools, techniques and approaches for text mining. Chandos Publishing, Cambridge, MA

    Book  Google Scholar 

  • Torres D, Torres A, Cuellar F, Torres M, Ponce-de-Leon E, Pinales F (2014) Evolutionary computation in the identification of risk factors, case of TRALI. Expert Syst Appl 41(3):831–840

    Article  Google Scholar 

  • Torres D, Torres A, Ponce-de-Leon E (2006) Genetic algorithm and typical testors in feature subset selection problem. In: Proceedings of sixth Iberoamerican conference on systemics, cybernetics and informatics, pp 1–5

  • Valev V, Asaithambi A (2003) On computational complexity of non-reducible descriptors. In: Proceedings of the IEEE international conference on information reuse and integration, pp 208–211

  • Valev V, Radeva P (1993) On the determining of non-irreducible descriptors for multidimensional pattern recognition problems. Pattern Recogn Image Anal 3(3):258–265

    Google Scholar 

  • Valev V, Sankur B (2004) Generalized non-reducible descriptors. Pattern Recogn 37(9):1809–1815

    Article  MATH  Google Scholar 

  • Valev V, Zhuravlev Y (1991) Integer-valued problems of transforming the training tables in k-valued code in pattern recognition problems. Pattern Recogn 24(4):283–288

    Article  MathSciNet  Google Scholar 

  • Vazquez R, Godoy-Calderon S (2007) Using testor theory to reduce the dimension of neural network models. Res Comput Sci 28:93–103

    Google Scholar 

  • Webb A (2002) Statistical pattern recognition. Wiley, New York, pp 305–360

    MATH  Google Scholar 

  • Witten DM, Tibshirani R (2010) A framework for feature selection in clustering. J Am Stat Assoc 105(490):713–726

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Sanchez-Diaz.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Diaz, G., Lazo-Cortes, M.S., Aguirre-Salado, C.A. et al. A review of algorithms to computing irreducible testors applied to feature selection. Artif Intell Rev 55, 6607–6628 (2022). https://doi.org/10.1007/s10462-022-10162-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10162-z

Keywords

Navigation