Abstract
Soil temperature (Ts) is an essential regulator of a plant’s root growth, evapotranspiration rates, and hence soil water content. Over the last few years, in response to the climatic change, significant amount of research has been conducted worldwide to understand the quantitative link between soil temperature and the climatic factors, and it was highlighted that the hydrothermal conditions in the soil are continuously changing in response to the change of the hydro-meteorological factors. A large amount of the models have been developed and used in the past for the analysis and modelling of soil temperature, however, none of them has investigated the robustness and feasibilities of the deep echo state network (Deep ESN) model. A more accurate model for forecasting Ts presents many worldwide opportunities in improving irrigation efficiency in arid climates and help attain sustainable water resources management. This research compares the application of the novel Deep ESN model versus three conventional machine learning models for soil temperature forecasting at 10 and 20 cm depths. We combined several critical daily hydro-meteorological data into six different input combinations for constructing the Deep ESN model. The accuracy of the developed soil temperature models is evaluated using three deterministic indices. The results of the evaluation indicate that the Deep ESN model outperformed conventional machine learning methods and can reduce the root mean square error (RMSE) accuracy of the traditional models between 30 and 60% in both stations. In the test phase, the most accurate estimation was obtained by Deep ESN at depths of 10 cm by RMSE = 2.41 °C and 20 cm by RMSE = 1.28 °C in Champaign station and RMSE = 2.17 °C (10 cm) and RMSE = 1.52 °C (20 cm) in Springfield station. The superior performance of the Deep ESN model confirmed that this model can be successfully applied for modelling Ts based on meteorological paarameters.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- Deep ESN:
-
Deep echo state network
- MLPNN:
-
Multilayer perceptron neural network
- RF:
-
Random forest
- TEM:
-
Air temperature
- ET0:
-
Potential evapotranspiration
- DEW:
-
Dew point temperature
- HUM:
-
Relative humidity
- RAD:
-
Solar radiation
- WIN:
-
Wind speed
- ST:
-
Soil temperature
- LM:
-
Levenberg–Marquardt
- IL:
-
Input layer
- HL:
-
Hidden layer
- OL:
-
Output layer
References
Abdolahnejad M, Liu PX (2020) Deep learning for face image synthesis and semantic manipulations: a review and future perspectives. Artif Intell Rev. https://doi.org/10.1007/s10462-020-09835-4
Alizamir M, Kim S, Kisi O, Zounemat-Kermani M (2020a) Deep echo state network: a novel machine learning approach to model dew point temperature using meteorological variables. Hydrol Sci J (Accepted). https://doi.org/10.1080/02626667.2020.1735639
Alizamir M, Kisi O et al (2020c) Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE 15(4):e0231055
Alizamir M, Kisi O et al (2020d) Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophys 2020:1–14
Alizamir M, Kim S, Kisi O, Zounemat-Kermani M (2020b) A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: case studies of the USA and Turkey regions. Energy: 117239
Araghi A, Mousavi-Baygi M, Adamowski J, Martinez C, van der Ploeg M (2017) Forecasting soil temperature based on surface air temperature using a wavelet artificial neural network. Meteorol Appl 24(4):603–611
Basurto-Lozada D, Hillier A, Medina D, Pulido D, Karaman S, Salas J (2020) Dynamics of soil surface temperature with unmanned aerial systems. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2020.07.003
Batmaz Z, Yurekli A, Bilge A et al (2019) A review on deep learning for recommender systems: challenges and remedies. Artif Intell Rev 52:1–37. https://doi.org/10.1007/s10462-018-9654-y
Behmanesh J, Mehdizadeh S (2017) Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region. Environ Earth Sci 76(2):76
Bonakdari H, Moeeni H, Ebtehaj I, Zeynoddin M, Mahoammadian A, Gharabaghi B (2019) New insights into soil temperature time series modeling: linear or non-linear? Theoret Appl Climatol 135(3–4):1157–1177
Breiman L (2001) Random forests. Machine learning 45(1):5–32
Citakoglu H (2017) Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey. Theoret Appl Climatol 130(1–2):545–556
Cutler A, Cutler DR, Stevens JR (2012) Random forests. In Ensemble machine learning. Springer, Boston, pp 157–175
Delbari M, Afrasiab P, Gharabaghi B, Amiri M, Salehian A (2019b) Spatial variability analysis and mapping of soil physical and chemical attributes in a salt-affected soil. Arab J Geosci 12(3):68
Delbari M, Sharifazari S, Mohammadi E (2019a) Modeling daily soil temperature over diverse climate conditions in Iran-a comparison of multiple linear regression and support vector regression techniques. Theoret Appl Climatol 135(3–4):991–1001
Deng Y, Liu P, Conrad R (2019) Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biol Biochem 132:69–79
Domingues I, Pereira G, Martins P et al (2019) Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09788-3
Feng Y, Cui N, Hao W, Gao L, Gong D (2019) Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 338:67–77
Gallicchio C, Micheli A (2017) Deep echo state network (deepESN): A brief survey. arXiv preprint arXiv:1712.04323
Gallicchio C, Micheli A, Pedrelli L (2018) Comparison between DeepESNs and gated RNNs on multivariate time-series prediction. arXiv preprint arXiv:1812.11527
Gharabaghi B, Safadoust A, Mahboubi AA, Mosaddeghi MR, Unc A, Ahrens B, Sayyad G (2015) Temperature effect on the transport of bromide and E. coli NAR in saturated soils. J Hydrol 522:418–427
Heddam S (2018) Development of air-soil temperature model using computational intelligence paradigms: artificial neural network versus multiple linear regression. Model Earth Syst Environ 5(3):747–751
Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905
Jahanfar A, Drake J, Gharabaghi B, Sleep B (2020) An experimental and modeling study of evapotranspiration from integrated green roof photovoltaic systems. Ecol Eng 152:105767. https://doi.org/10.1016/j.ecoleng.2020.105767
Jahanfar A, Drake J, Sleep B, Gharabaghi B (2018) A modified FAO evapotranspiration model for refined water budget analysis for Green Roof systems. Ecol Eng 119:45–53
Kim S, Alizamir M, Zounemat-Kermani M, Kisi O, Singh VP (2020) Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea. J Environ Manage 270:110834. https://doi.org/10.1016/j.jenvman.2020.110834
Kim S, Singh VP (2014) Modeling daily soil temperature using data-driven models and spatial distribution. Theoret Appl Climatol 118(3):465–479
Kisi O, Alizamir M (2018) Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: wavelet extreme learning machine vs wavelet neural networks. Agric For Meteorol 263:41–48
Kisi O, Tombul M, Zounemat-Kermani M (2015) Modeling soil temperatures at different depths by using three different neural computing techniques. Theoret Appl Climatol 121(1–2):377–387
Kisi O, Genc O, Dinc S, Zounemat-Kermani M (2016) Daily pan evaporation modeling using Chi squared automatic interaction detector, neural networks, classification and regression tree. Comput Electron Agric 122:112–117
Kisi O, Alizamir M, Zounemat-Kermani M (2017a) Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Nat Hazards 87(1):367–381
Kisi O, Sanikhani H, Cobaner M (2017b) Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques. Theoret Appl Climatol 129(3–4):833–848
Kisi O, Alizamir M, Gorgij AD (2020) Dissolved oxygen prediction using a new ensemble method. Environ Sci Pollut Res 2020:1–15
Kohn J, Royer A (2010) AMSR-E data inversion for soil temperature estimation under snow cover. Remote Sens Environ 114(12):2951–2961
Korjani MM, Bazzaz O, Menhaj MB (2008) Real time identification and control of dynamic systems using recurrent neural networks. Artif Intell Rev 30:1. https://doi.org/10.1007/s10462-009-9111-z
Kurylyk BL, MacQuarrie KT, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth Sci Rev 138:313–334. https://doi.org/10.1016/j.earscirev.2014.06.006
Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149
Ma Q, Shen L, Cottrell GW (2017) Deep-esn: a multiple projection-encoding hierarchical reservoir computing framework. arXiv preprint arXiv:1711.05255
Mehdizadeh S, Ahmadi F, Kozekalani Sales A (2020c) Modelling daily soil temperature at different depths via the classical and hybrid models. Meteorol Appl 27(4):e1941. https://doi.org/10.1002/met.1941
Mehdizadeh S, Behmanesh J, Khalili K (2017) Evaluating the performance of artificial intelligence methods for estimation of monthly mean soil temperature without using meteorological data. Environ Earth Sci 76(8):325
Mehdizadeh S, Behmanesh J, Khalili K (2018) Comprehensive modeling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine. Theor Appl Climatol 133(3–4):911–924. https://doi.org/10.1007/s00704-017-2227-1
Mehdizadeh S, Fathian F, Safari MJS, Khosravi A (2020a) Developing novel hybrid models for estimation of daily soil temperature at various depths. Soil Tillage Research 197:104513. https://doi.org/10.1016/j.still.2019.104513
Mehdizadeh S, Mohammadi B, Pham QB, Khoi DN, Nhi PTT (2020b) Implementing novel hybrid models to improve indirect measurement of the daily soil temperature: Elman neural network coupled with gravitational search algorithm and ant colony optimization. Measurement. https://doi.org/10.1016/j.measurement.2020.108127
Mihoub R, Chabour N, Guermoui M (2016) Modeling soil temperature based on Gaussian process regression in a semi-arid-climate, case study Ghardaia, Algeria. Geomech Geophys Geo-Energy Geo-Resourc 2(4):397–403
Moazenzadeh R, Mohammadi B (2019) Assessment of bio-inspired metaheuristic optimization algorithms for estimating soil temperature. Geoderma 353:152–171
Nahvi B, Habibi J, Mohammadi K, Shamshirband S, Al Razgan OS (2016) Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Comput Electron Agric 124:150–160
Nguyen LT, Broughton K, Osanai Y, Anderson IC, Bange MP, Tissue DT, Singh BK (2019a) Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia-oxidizing microbial communities in field-grown crop. Sci Total Environ 675:81–89
Nguyen G, Dlugolinsky S, Bobák M et al (2019b) machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124. https://doi.org/10.1007/s10462-018-09679-z
Qi J, Zhang X, Cosh MH (2019) Modeling soil temperature in a temperate region: a comparison between empirical and physically based methods in SWAT. Ecol Eng 129:134–143
Quinlan JR (1992) Learning with continuous classes. Fifth Austr Jt Conf Artif Intell 92:343–348
Safadoust A, Amiri Khaboushan E, Mahboubi AA, Gharabaghi B, Mosaddeghi MR, Ahrens B, Hassanpour Y (2016) Comparison of three models describing bromide transport affected by different soil structure types. Arch Agron Soil Sci 62(5):674–687
Samadianfard S, Asadi E, Jarhan S, Kazemi H, Kheshtgar S, Kisi O, Sajjadi S, Manaf AA (2018a) Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths. Soil Till Res 175:37–50
Samadianfard S, Ghorbani MA, Mohammadi B (2018b) Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Inf Process Agric 5(4):465–476
Sanikhani H, Deo RC, Yaseen ZM, Eray O, Kisi O (2018) Non-tuned data intelligent model for soil temperature estimation: a new approach. Geoderma 330:52–64
Sattari MT, Mirabbasi R, Sushab RS, Abraham J (2018) Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model. Groundwater 56(4):636–646
Sihag P, Esmaeilbeiki F, Singh B, Pandhiani SM (2019) Model-based soil temperature estimation using climatic parameters: the case of Azerbaijan Province, Iran. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2019.1610841
Singh VK, Singh BP, Kisi O, Kushwaha DP (2018) Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression based models in arid area. Comput Electron Agric 150:205–219
Soureshjani HK, Bahador M, Tadayon M, Dehkordi AG (2019) Modelling seed germination and seedling emergence of flax and sesame as affected by temperature, soil bulk density, and sowing depth. Ind Crops Prod 141:111770
Stajkowski S, Kumar D, Samui P, Bonakdari H, Gharabaghi B (2020) Genetic-algorithm-optimized sequential model for water temperature prediction. Sustainability 12(13):5374. https://doi.org/10.3390/su12135374
Talaee PH (2014) Daily soil temperature modeling using neuro-fuzzy approach. Theoret Appl Climatol 118(3):481–489
Wang W, Akhtar K, Ren G, Yang G, Feng Y, Yuan L (2019) Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Sci Total Environ 652:471–482
Wang L, Hu B, Kisi O, Zounemat-Kermani M, Gong W (2017) Prediction of diffuse photosynthetically active radiation using different soft computing techniques. Quart J R Meteorol Soc 143(706):2235–2244
Wang Y, Witten IH (1996) Induction of model trees for predicting continuous classes. Department of Computer Science, University of Waikato, Hamilton, New Zealand
Yan Y, Yan R, Chen J, Xin X, Eldridge DJ, Shao C, Guo Z (2018) Grazing modulates soil temperature and moisture in a Eurasian steppe. Agric For Meteorol 262:157–165
Yang S, Li R, Wu T, Hu G, Xiao Y, Du Y, Shi J (2020) Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma 377:114583. https://doi.org/10.1016/j.geoderma.2020.114583
Zeynoddin M, Bonakdari H, Ebtehaj I, Esmaeilbeiki F, Gharabaghi B, Haghi DZ (2019) A reliable linear stochastic daily soil temperature forecast model. Soil Till Res 189:73–87
Zhan W, Zhou J, Ju W, Li M, Sandholt I, Voogt J, Yu C (2014) Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: an analytical three-time-scale model. Remote Sens Environ 143:1–14. https://doi.org/10.1016/j.rse.2013.12.004
Zhang Y, Chen W, Smith SL, Riseborough DW, Cihlar J (2005) Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change. J Geophys Res Atmos. https://doi.org/10.1029/2004JD004910
Zounemat-Kermani M (2012) Hydro-meteorological parameters in prediction of soil temperature by means of artificial neural network: case study in Wyoming. J Hydrol Eng 18(6):707–718
Zounemat-Kermani M, Rajaee T, Ramezani-Charmahineh A, Adamowski JF (2017) Estimating the aeration coefficient and air demand in bottom outlet conduits of dams using GEP and decision tree methods. Flow Meas Instrum 54:9–19
Zounemat-Kermani M, Ramezani-Charmahineh A, Adamowski J, Kisi O (2018) Investigating the management performance of disinfection analysis of water distribution networks using data mining approaches. Environ Monit Assess 190(7):397
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alizamir, M., Kim, S., Zounemat-Kermani, M. et al. Modelling daily soil temperature by hydro-meteorological data at different depths using a novel data-intelligence model: deep echo state network model. Artif Intell Rev 54, 2863–2890 (2021). https://doi.org/10.1007/s10462-020-09915-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-020-09915-5