Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A corporate shuffled complex evolution for parameter identification

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper proposes a new version of the shuffled complex evolution (SCE) algorithm for solving parameter identification problems. The SCE divides a population into several parallel subsets called complex and then improves each sub-complex through an evolutionary process using a Nelder–Mead (NM) simplex search method. This algorithm applies its evolutionary process only on the worst member of each sub-complex whereas the role of other members is not operative. Therefore, the number and variety of search moves are limited in the evolutionary process of SCE. The current study focuses to overcome this drawback by proposing a corporate SCE (CSCE). This algorithm provides an evolutionary possibility for all members of a sub-complex. In the CSCE, each member is influenced by a simplex made from all other members of the current sub-complex. The CSCE barrows three actions of NM, i.e. reflection, contraction and expansion, and applied them on each member to find a better candidate than the current one. The efficacy of the proposed algorithm is first tested on six benchmark problems. After achieving satisfactory performance on the test problems, it is applied to parameter identification problems and the obtained results are compared with some other algorithms reported in the literature. Numerical results and non-parametric analysis show that the proposed algorithm is very effective and robust since it produces similar and promising results over repeated runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahandani MA (2014) A diversified shuffled frog leaping: an application for parameter identification. Appl Math Comput 239:1–16

    MathSciNet  MATH  Google Scholar 

  • Ahandani MA, Alavi-Rad H (2015) Opposition-based learning in shuffled frog leaping: an application for parameter identification. Inf Sci 291:19–42

    Google Scholar 

  • Ahandani MA, Kharrati H (2018) Chaotic shuffled frog leaping algorithms for parameter identification of fractional-order chaotic systems. J Exp Theor Artif Intell 30:561–581

    Google Scholar 

  • Ahandani MA, Banimahd R, Shrjoposht NP (2011) Solving the parameter identification problem using shuffled frog leaping with opposition-based initialization. In: 1st International eConference on computer and knowledge engineering, Mashahd, Iran, pp 49–53

  • Alfi A (2011) PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Auto Sin 37:541–549

    MATH  Google Scholar 

  • Avalo O, Cuevas E, Galvez J (2016) Induction motor parameter identification using a gravitational search algorithm. Computers 5(2):6

    Google Scholar 

  • Barakat SA, Altoubat S (2009) Application of evolutionary global optimization techniques in the design of RC water tanks. Eng Struct 31:332–344

    Google Scholar 

  • Chang WD (2007) Nonlinear system identification and control using a real-coded genetic algorithm. Appl Math Model 31:541–550

    MATH  Google Scholar 

  • Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res 33:859–871

    MATH  Google Scholar 

  • Chen BS, Lee BK, Peng SC (2002) Maximum likelihood parameter estimation of F-ARIMA processes using the genetic algorithm in the frequency domain. IEEE Trans Signal Process 50:2208–2220

    Google Scholar 

  • Chu W, Gao X, Sorooshian S (2010) Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: application to the calibration of the Sacramento soil-moisture accounting model. Water Resour Res. https://doi.org/10.1029/2010wr009224

    Article  Google Scholar 

  • Chu W, Gao X, Sorooshian S (2011) A new evolutionary search strategy for global optimization of high-dimensional problems. Inf Sci 181:4909–4927

    Google Scholar 

  • Cuevas E, Osuna V, Oliva D (2017) Parameter identification of induction motors. In: Cuevas E, Osuna V, Oliva D (eds) Evolutionary computation techniques: a comparative perspective. Springer, Cham, pp 139–154

    Google Scholar 

  • Ding F, Chen T (2005) Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41(2):315–325

    MathSciNet  MATH  Google Scholar 

  • Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76(3):501–521

    MathSciNet  MATH  Google Scholar 

  • Gabor A, Banga JR (2015) Robust and efficient parameter estimation in dynamic models of biological systems. BMC Syst Biol 9(1):74

    Google Scholar 

  • Gao X, Cui Y, Hu J, Xu G, Wang Z, Qu J, Wang H (2018) Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers Manag 157:460–479

    Google Scholar 

  • Gomes RCM, Vitorino MA, de Rossiter Correa MB, Fernandes DA, Wang R (2017) Shuffled complex evolution on photovoltaic parameter extraction: a comparative analysis. IEEE Trans Sustain Energy 8(2):805–815

    Google Scholar 

  • Gopalakrishnan K, Kim S (2010) Global optimization of pavement structural parameters during back-calculation using hybrid shuffled complex evolution algorithm. J Comput Civil Eng 24:441–451

    Google Scholar 

  • Gotmare A, Bhattacharjee SS, Patidar R, George NV (2017) Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol Comput 32:68–84

    Google Scholar 

  • Guo J, Zhou J, Zou Q, Liu Y, Song L (2013) A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manag 27:2923–2946

    Google Scholar 

  • Hasalova L, Ira J, Jahoda M (2016) Practical observations on the use of shuffled complex evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling. Fire Saf J 80:71–82

    Google Scholar 

  • Ho WH, Chou JH, Guo CY (2010) Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dynam 61:29–41

    MathSciNet  MATH  Google Scholar 

  • Jeon JH, Park CG, Engel B (2014) Comparison of performance between genetic algorithm and SCE-UA for calibration of SCS-CN surface runoff simulation. Water 6(11):3433–3456

    Google Scholar 

  • Khalik MA, Sherif M, Saraya S, Areed F (2007) Parameter identification problem: real-coded GA approach. Appl Math Comput 187:1495–1501

    MATH  Google Scholar 

  • Khalik MA, Sherif M, Saraya S, Areed F (2010) Solving parameter identification problem by hybrid particle swarm optimization. In: Proceedings of the international multiconference of engineer and computer scientists, Hong Kong

  • Kim KA, Spencer SL, Albeck JG, Burke JM, Sorger PK, Gaudet S et al (2010) Systematic calibration of a cell signaling network model. BMC Bioinf 11:202

    Google Scholar 

  • Li L-L, Wang L, Liu L-h (2006) An effective hybrid PSOSA strategy for optimization and its application to parameter estimation. Appl Math Comput 179:135–146

    MathSciNet  MATH  Google Scholar 

  • Lin J, Wang ZJ (2017) Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm. Nonlinear Dyn 90(2):1243–1255

    MathSciNet  Google Scholar 

  • Malla RN, Ramesh RK, Ramana NV (2013) A unit commitment solution using differential evolution and economic dispatch using shuffled complex evolution with principal component analysis. Int Rev Model Simulat 27:2923–2946

    Google Scholar 

  • Mariani VC, Luvizotto LGJ, Guerra FA, Coelho LdS (2011) A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl Math Comput 217:5822–5829

    MathSciNet  MATH  Google Scholar 

  • Miro A, Pozo C, Guillen-Gosalbez G, Egea JA, Jimenez L (2012) Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinf 13(1):90

    Google Scholar 

  • Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    Google Scholar 

  • Nyarko EK, Scitovski R (2004) Solving the parameter identification problem of mathematical model using genetic algorithm. Appl Math Comput 153:651–658

    MathSciNet  MATH  Google Scholar 

  • Perez I, Gomez-Gonzalez M, Jurado F (2013) Estimation of induction motor parameters using shuffled frog-leaping algorithm. Electr Eng 95:267–275

    Google Scholar 

  • Pintelon R, Schoukens J (2012) System identification: a frequency domain approach. Wiley, Hoboken

    MATH  Google Scholar 

  • Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D et al (2013) Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE 8(9):74335

    Google Scholar 

  • Seong C, Her Y, Benham B (2015) Automatic calibration tool for Hydrologic Simulation Program-FORTRAN using a shuffled complex evolution algorithm. Water 7(2):503–527

    Google Scholar 

  • Singer AB, Taylor JW, Barton PI, Green WH Jr (2006) Global dynamic optimization for parameter estimation in chemical kinetics. J Phys Chem 110:971–976

    Google Scholar 

  • Singh U, Salgotra R (2016) Synthesis of linear antenna array using flower pollination algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2457-7

    Article  Google Scholar 

  • Singh U, Salgotra R (2018) Synthesis of linear antenna array using flower pollination algorithm. Neural Comput Appl 29(2):435–445

    Google Scholar 

  • Tang Y, Zhang X, Hua C, Li L, Yang Y (2012) Parameter identification of commensurate fractional-order chaotic system via differential evolution. Phys Lett A 376:457–464

    MATH  Google Scholar 

  • Van Huffel S, Lemmerling P (eds) (2013) Total least squares and errors-in-variables modeling: analysis, algorithms and applications. Springer, Berlin

    Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:105

    Google Scholar 

  • Wang L, Li LL, Zheng DZ (2003) A class of effective search strategies for parameter estimation of nonlinear systems. ACTA Autom Sin 29:953–958

    Google Scholar 

  • Wang G, Chen G, Bai F (2015) Modeling and identification of asymmetric Bouc–Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens Actuators A Phys 235:105–118

    Google Scholar 

  • Weipeng G, Qiwei H, Zhengtao Y (2016) A survey on method of system identification. DEStech T Eng Tech Res. https://doi.org/10.12783/dtetr/mdm2016/4997

    Article  Google Scholar 

  • Zahara E, Liu A (2010) Solving parameter identification problem by hybrid particle swarm optimization. In: Proceedings of the international multiconference of engineering and computer scientists. Lecture notes in engineering and computer science, Hong Kong, pp 36–38

  • Zaman MA, Matin A (2012) Nonuniformly spaced linear antenna array design using firefly algorithm. Int J Microw Sci Technol. https://doi.org/10.1155/2012/256759

    Article  Google Scholar 

  • Zaman MA, Sikder U (2015) Bouc–Wen hysteresis model identification using modified firefly algorithm. J Magn Magn Mater 395:229–233

    Google Scholar 

  • Zhang J, Xia P (2017) An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J Sound Vib 389:153–167

    Google Scholar 

  • Zhao F, Zhang J, Wang J, Zhang C (2015) A shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problem. Int J Comp Integr Manuf 28:1220–1235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Kharrati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahandani, M.A., Kharrati, H. A corporate shuffled complex evolution for parameter identification. Artif Intell Rev 53, 2933–2956 (2020). https://doi.org/10.1007/s10462-019-09751-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09751-2

Keywords

Navigation