Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Eigenvalue analysis and applications of the Legendre dual-Petrov-Galerkin methods for initial value problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we show that the eigenvalues and eigenvectors of the spectral discretisation matrices resulting from the Legendre dual-Petrov-Galerkin (LDPG) method for the mth-order initial value problem (IVP): \(u^{(m)}(t)=\sigma u(t),\, t\in (-1,1)\) with constant \(\sigma \not =0\) and usual initial conditions at t\(=-1,\) are associated with the generalised Bessel polynomials (GBPs). In particular, we derive analytical formulae for the eigenvalues and eigenvectors in the cases m\(=1,2\). As a by-product, we are able to answer some open questions related to the collocation method at Legendre points (extensively studied in the 1980s) for the first-order IVP, by reformulating it into a Petrov-Galerkin formulation. Our results have direct bearing on the CFL conditions of time-stepping schemes with spectral or spectral-element discretisation in space. Moreover, we present two stable algorithms for computing zeros of the GBPs and develop a general space-time method for evolutionary PDEs. We provide ample numerical results to demonstrate the high accuracy and robustness of the space-time methods for some interesting examples of linear and nonlinear wave problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The code used in this work will be made available upon request to the authors.

References

  1. Boulmezaoud, T.Z., Urquiza, J.M.: On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation. J. Sci. Comput. 31(3), 307–345 (2007)

    Article  MathSciNet  Google Scholar 

  2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid mechanics. Springer-Verlag, New York (1988)

    Google Scholar 

  3. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in single domains. Springer, Berlin (2006)

    Book  Google Scholar 

  4. Csordas, G., Charalambides, M., Waleffe, F.: A new property of a class of Jacobi polynomials. Proc. Amer. Math. Soc. 133(12), 3551–3560 (2005)

    Article  MathSciNet  Google Scholar 

  5. De Bruin, M.G., Saff, E.B., Varga, R.S.: On the zeros of generalized Bessel polynomials. I and II. Indag. Math. 43(1), 1–25 (1981)

  6. Dubiner, M.: Asymptotic analysis of spectral methods. J. Sci. Comput. 2(1), 3–31 (1987)

    Article  MathSciNet  Google Scholar 

  7. Gottlieb, D., Lustman, L.: The spectrum of the Chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20, 909–921 (1983)

    Article  MathSciNet  Google Scholar 

  8. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. SIAM-CBMS, Philadelphia (1977)

    Book  Google Scholar 

  9. Grosswald, E.: Bessel polynomials. Springer, Berlin Heidelberg (1978)

    Book  Google Scholar 

  10. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations. I. Nonstiff Problems, 2nd edn, volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1993)

  11. Shen, J., Wang, L.-L.: Fourierization of the Legendre-Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57, 710–720 (2007)

    Article  MathSciNet  Google Scholar 

  12. Krall, H.L., Frink, O.: A new class of orthogonal polynomials: the Bessel polynomials. Trans. Am. Math. Soc. 65(1), 100–115 (1949)

    Article  MathSciNet  Google Scholar 

  13. Liu, J., Wang, X., Wu, S., Zhou, T.: A well-conditioned direct PinT algorithm for first-and second-order evolutionary equations. Adv. Comput. Math. 48, 16 (2022)

    Article  MathSciNet  Google Scholar 

  14. Loli, G., Sangalli, G., Tesini, P.: High-order spline upwind for space-time isogeometric analysis. Comput. Methods Appl. Mech. Eng. 417, 116408 (2023)

    Article  MathSciNet  Google Scholar 

  15. Lui, S.H.: Legendre spectral collocation in space and time for PDEs. Numer. Math. 136(1), 75–99 (2016)

    Article  MathSciNet  Google Scholar 

  16. Maday, Y., Rønquist, E.M.: Parallelization in time through tensor-product space-time solvers. C. R. Acad. Sci. Paris, Ser. I, 346(1-2):113–118 (2008)

  17. Pasquini, L.: On the computation of the zeros of the Bessel polynomials. In: Approximation and Computation: A Festschrift in Honor of Walter Gautschi, pages 511–534. Birkhäuser Boston (1994)

  18. Pasquini, L.: Accurate computation of the zeros of the generalized Bessel polynomials. Numer. Math. 86(3), 507–538 (2000)

    Article  MathSciNet  Google Scholar 

  19. Segura, J.: Computing the complex zeros of special functions. Numer. Math. 124(4), 723–752 (2013)

    Article  MathSciNet  Google Scholar 

  20. Shen, J.: A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KDV equation. SIAM J. Numer. Anal. 41(5), 1595–1619 (2003)

    Article  MathSciNet  Google Scholar 

  21. Shen, J., Sheng, C.-T.: An efficient space-time method for time fractional diffusion equation. J. Sci. Comput. 81(2), 1088–1110 (2019)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Tang, T., Wang, L.-L.: Spectral methods: algorithm, analysis and application. Springer-Verlag, New York (2011)

  23. Shen, J., Wang, L.-L.: Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations. Comput. Methods Appl. Mech. Eng. 196(37–40), 3785–3797 (2007)

    Article  MathSciNet  Google Scholar 

  24. Tal-Ezer, H.: A pseudospectral Legendre method for hyperbolic equations with an improved stability condition. J. Comput. Phys. 67(1), 145–172 (1986)

    Article  MathSciNet  Google Scholar 

  25. Tal-Ezer, H.: Spectral methods in time for hyperbolic equations. SIAM J. Numer. Anal. 23(1), 11–26 (1986)

    Article  MathSciNet  Google Scholar 

  26. Tal-Ezer, H.: Spectral methods in time for parabolic problems. SIAM J. Numer. Anal. 26(1), 1–11 (1989)

    Article  MathSciNet  Google Scholar 

  27. Tang, J.-G., Ma, H.-P.: Single and multi-interval Legendre \({\tau }\)-methods in time for parabolic equations. Adv. Comput. Math. 17(4):349–367 (2002)

  28. Tang, J.-G., Ma, H.-P.: A Legendre spectral method in time for first-order hyperbolic equations. Appl. Numer. Math. 57(1), 1–11 (2007)

    Article  MathSciNet  Google Scholar 

  29. Trefethen, L.N., Trummer, M.R.: An instability phenomenon in spectral methods. SIAM J. Numer. Anal. 24(5), 1008–1023 (1987)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Waleffe, F.: The asymptotic eigenvalues of first-order spectral differentiation matrices. J. Appl. Math. Phys. 02(05), 176–188 (2014)

    Article  Google Scholar 

  31. Wang, X.P., Kong, D.S., Wang, L.-L.: Numerical study of the linear KdV and Kadomtsev-Petviashvili equations in oscillatory regimes. In preparation (2022)

  32. Weideman, J.A.C., Trefethen, L.N.: The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65(2), 455–466 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work is supported in part by the National Natural Science Foundation of China (No. 12271528, No. 12001280, 11971407) and by Singapore MOE AcRF Tier 1 Grant: MOE2021-T1-RG15/21. The first author also acknowledges the support from the Fundamental Research Funds for the Central Universities (No. 2020zzts031) and the China Scholarship Council (CSC, No. 202106370101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desong Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Francesca Rapetti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Shen, J., Wang, LL. et al. Eigenvalue analysis and applications of the Legendre dual-Petrov-Galerkin methods for initial value problems. Adv Comput Math 50, 97 (2024). https://doi.org/10.1007/s10444-024-10190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10190-z

Keywords

Mathematics subject classification (2010)

Navigation