Abstract
By exploiting the random sampling techniques, this paper derives an efficient randomized algorithm for computing a generalized CUR decomposition, which provides low-rank approximations of both matrices simultaneously in terms of some of their rows and columns. For large-scale data sets that are expensive to store and manipulate, a new variant of the discrete empirical interpolation method known as L-DEIM, which needs much lower cost and provides a significant acceleration in practice, is also combined with the random sampling approach to further improve the efficiency of our algorithm. Moreover, adopting the randomized algorithm to implement the truncation process of restricted singular value decomposition (RSVD), combined with the L-DEIM procedure, we propose a fast algorithm for computing an RSVD based CUR decomposition, which provides a coordinated low-rank approximation of the three matrices in a CUR-type format simultaneously and provides advantages over the standard CUR approximation for some applications. We establish detailed probabilistic error analysis for the algorithms and provide numerical results that show the promise of our approaches.
Similar content being viewed by others
Data Availability
All datasets are publicly available.
References
Abid, A., Zhang, M.J., Bagaria, V.K., Zou, J.: Exploring patterns enriched in a dataset with contrastive principal component analysis, Nature. Communications 9, 1–7 (2018)
Bai, Z., Demmel, J.W.: Computing the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1464–1486 (1993)
Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. Mach. Intell. 29, 173–180 (2006)
Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339, 667–672 (2004)
Boileau, P., Hejazi, N.S., Dudoit, S.: Exploring high-dimensional biological data with sparse contrastive principal component analysis. Bioinformatics 36, 3422–3430 (2020)
Boutsidis, C., Drineas, P.: Random projections for the nonnegative least-squares problem. Linear Algebra Appl. 431, 760–771 (2009)
Boutsidis, C., Woodruff, D.P.: Optimal CUR matrix decompositions. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 353–362 (2014)
Cai, H., Hamm, K., Huang, L., Li, J., Wang, T.: Rapid robust principal component analysis: CUR accelerated inexact low rank estimation. IEEE Signal Process. Lett. 28, 116–120 (2020)
Cai, H., Hamm, K., Huang, L., Needell, D.: Robust CUR decomposition: Theory and imaging applications. SIAM J. Imaging Sci. 14, 1472–1503 (2021)
Cai, H., Huang, L., Li, P., Needell, D.: Matrix completion with cross-concentrated sampling: Bridging uniform sampling and CUR sampling. IEEE Trans. Pattern Anal. Mach. Intell. 45, 10100–10113 (2023)
Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)
Chen, J., Wang, G., Giannakis, G.B.: Nonlinear dimensionality reduction for discriminative analytics of multiple datasets. IEEE Trans. Signal Process. 67, 740–752 (2018)
Chu, D., De Lathauwer, L., De Moor, B.: On the computation of the restricted singular value decomposition via the cosine-sine decomposition. SIAM J. Matrix Anal. Appl. 22, 580–601 (2000)
De Moor, B.L., Golub, G.H.: The restricted singular value decomposition: properties and applications. SIAM J. Matrix Anal. Appl. 12, 401–425 (1991)
Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error CUR matrix decompositions. SIAM J. Matrix Anal. Appl. 30, 844–881 (2008)
Drmač, Z., Saibaba, A.K.: The discrete empirical interpolation method: Canonical structure and formulation in weighted inner product spaces. SIAM J. Matrix Anal. Appl. 39, 1152–1180 (2018)
Gidisu, P.Y., Hochstenbach, M.E.: A generalized CUR decomposition for matrix pairs. SIAM J. Math. Data Sci. 4, 386–409 (2022)
Gidisu, P.Y., Hochstenbach, M.E.: A hybrid DEIM and leverage scores based method for CUR index selection. Progress in Industrial Mathematics at ECMI 2022, 147–153 (2021)
Gidisu, P.Y., Hochstenbach, M.E.: A restricted svd type CUR decomposition for matrix triplets. SIAM J. Sci. Comput., S401–S423, (2022)
Goreinov, S.A., Tyrtyshnikov, E.E.: The maximal-volume concept in approximation by low-rank matrices. Contemp. Math. 280, 47–52 (2001)
Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)
Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)
Hamm, K., Huang, L.: Perturbations of CUR decompositions. SIAM J. Matrix Anal. Appl. 42, 351–375 (2021)
Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA (1998)
Hendryx, E.P., Rivière, B.M., Rusin, C.G.: An extended DEIM algorithm for subset selection and class identification. Mach. Learn. 110, 621–650 (2021)
Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
Huang, J., Jia, Z.: Two harmonic Jacobi-Davidson methods for computing a partial generalized singular value decomposition of a large matrix pair. J. Sci. Comput. 93, 41 (2022)
James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning, vol. 112, Springer, (2013)
Jolliffe, I.T.: Discarding variables in a principal component analysi i: Artificial data. J. R. Stat. Soc., C: Appl. Stat. 21, 160–173 (1972)
Li, R.-C.: Bounds on perturbations of generalized singular values and of associated subspaces. SIAM J. Matrix Anal. Appl. 14, 195–234 (1993)
Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. 106, 697–702 (2009)
Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18, 398–405 (1981)
Papailiopoulos, D., Kyrillidis, A., Boutsidis, C.: Provable deterministic leverage score sampling. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 997–1006 (2014)
Peherstorfer, B., Drmač, Z., Gugercin, S.: Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points. SIAM J. Sci. Comput. 42, A2837–A2864 (2020)
Rachkovskij, D., Revunova, E.: A randomized method for solving discrete ill-posed problems. Cybern. Syst. Anal. 48, 621–635 (2012)
Saibaba, A.K.: Randomized discrete empirical interpolation method for nonlinear model reduction. SIAM J. Sci. Comput. 42, A1582–A1608 (2020)
Saibaba, A.K., Hart, J., van Bloemen Waanders, B.: Randomized algorithms for generalized singular value decomposition with application to sensitivity analysis. Numer. Linear Algebra Appl. 28, e2364 (2021)
Saibaba, A.K., Lee, J., Kitanidis, P.K.: Randomized algorithms for generalized hermitian eigenvalue problems with application to computing Karhunen-Loève expansion. Numer. Linear Algebra Appl. 23, 314–339 (2016)
Sorensen, D.C., Embree, M.: A DEIM induced CUR factorization. SIAM J. Sci. Comput. 38, A1454–A1482 (2016)
Stewart, G.: Computing the CS decomposition of a partitioned orthonormal matrix. Numerische Mathematik 40, 297–306 (1982)
Stewart, G.W.: Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix. Numerische Mathematik 83, 313–323 (1999)
Sun, J.-G.: On the perturbation of generalized singular values. Math. Numer. Sinica 4, 229–233 (1982)
Sun, J.-G.: Perturbation analysis for the generalized singular value problem. SIAM J. Numer. Anal. 20, 611–625 (1983)
Szyld, D.B.: The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42, 309–323 (2006)
Van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13, 76–83 (1976)
Van Loan, C.F.: Computing the CS and the generalized singular value decompositions. Numerische Mathematik 46, 479–491 (1985)
Voronin, S., Martinsson, P.-G.: Efficient algorithms for cur and interpolative matrix decompositions. Adv. Comput. Math. 43, 495–516 (2017)
Wang, S., Zhang, Z.: Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling, The. J. Mach. Learn. Res. 14, 2729–2769 (2013)
Wei, W., Zhang, H., Yang, X., Chen, X.: Randomized generalized singular value decomposition, Communications on. Appl. Math. Comput. 3, 137–156 (2021)
Wei, Y., Stanimirović, P., Petković, M.: Numerical and Symbolic Computations of Generalized Inverses. Hackensack, World Scientific, NJ (2018)
Wei, Y., Xie, P., Zhang, L.: Tikhonov regularization and randomized GSVD. SIAM J. Matrix Anal. Appl. 37, 649–675 (2016)
Xiang, H., Zou, J.: Regularization with randomized SVD for large-scale discrete inverse problems. Inverse Probl. 29, 085008 (2013)
Xie, P., Xiang, H., Wei, Y.: Randomized algorithms for total least squares problems. Numer. Linear Algebra Appl. 26, e2219 (2019)
Xu, C., Tao, D., Xu, C.: A survey on multi-view learning, arXiv:1304.5634, (2013)
Zha, H.: The restricted singular value decomposition of matrix triplets. SIAM J. Matrix Anal. Appl. 12, 172–194 (1991)
Zha, H.: Computing the generalized singular values/vectors of large sparse or structured matrix pairs. Numerische Mathematik 72, 391–417 (1996)
Zhang, L., Wei, Y.: Randomized core reduction for discrete ill-posed problem. J. Comput. Appl. Math. 375, 112797 (2020)
Zhang, L., Wei, Y., Chu, E.K.-W.: Neural network for computing GSVD and RSVD. Neurocomputing 444, 59–66 (2021)
Zwaan, I.N.: Towards a more robust algorithm for computing the restricted singular value decomposition, arXiv:2002.04828, (2020)
Acknowledgements
The authors would like to thank the handling editor and two anonymous reviewers for their very insightful and constructive comments which helped greatly in improving the manuscript. Z. Cao is supported by the National Natural Science Foundation of China under Grant 11801534. Y. Wei is supported by the National Natural Science Foundation of China under Grant 12271108 and Ministry of Science and Technology of China under grant G2023132005L. P. Xie is supported by the National Natural Science Foundation of China under Grants 12271108, 11801534, Fundamental Research Funds for the Central Universities (No. 202264006), Laoshan Laboratory (LSKJ202202302) and Qingdao Natural Science Foundation 23-2-1-158-zyyd-jch..
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors have no conflicts of interest to declare.
Additional information
Communicated by: Peter Benner
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cao, Z., Wei, Y. & Xie, P. Randomized GCUR decompositions. Adv Comput Math 50, 77 (2024). https://doi.org/10.1007/s10444-024-10168-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-024-10168-x