Abstract
Matrix skeletonizations like the interpolative and CUR decompositions provide a framework for low-rank approximation in which subsets of a given matrix’s columns and/or rows are selected to form approximate spanning sets for its column and/or row space. Such decompositions that rely on “natural” bases have several advantages over traditional low-rank decompositions with orthonormal bases, including preserving properties like sparsity or non-negativity, maintaining semantic information in data, and reducing storage requirements. Matrix skeletonizations can be computed using classical deterministic algorithms such as column-pivoted QR, which work well for small-scale problems in practice, but suffer from slow execution as the dimension increases and can be vulnerable to adversarial inputs. More recently, randomized pivoting schemes have attracted much attention, as they have proven capable of accelerating practical speed, scale well with dimensionality, and sometimes also lead to better theoretical guarantees. This manuscript provides a comparative study of various randomized pivoting-based matrix skeletonization algorithms that leverage classical pivoting schemes as building blocks. We propose a general framework that encapsulates the common structure of these randomized pivoting-based algorithms and provides an a-posteriori-estimable error bound for the framework. Additionally, we propose a novel concretization of the general framework and numerically demonstrate its superior empirical efficiency.
Similar content being viewed by others
References
Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261(1), 1–21 (1997). https://doi.org/10.1016/S0024-3795(96)00301-1
Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU press, Baltimore, MD, USA (2013)
Trefethen, L.N., Bau, D.: Numerical Linear Algebra, vol. 181. Siam, Philadelphia, PA, USA (2022)
Kezhong Zhao, Vouvakis, M.N., Jin-Fa Lee: The adaptive cross approximation algorithm for accelerated method of moments computations of emc problems. IEEE Trans. Electromagn. Compatibility 47(4), 763–773 (2005). https://doi.org/10.1109/TEMC.2005.857898
Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rankrevealing qr factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996). https://doi.org/10.1137/0917055
Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011). https://doi.org/10.1137/090771806
Liberty, E., Woolfe, F., Martinsson, P.-G., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices. Proceedings of the National Academy of Sciences 104(51), 20167–20172 (2007) https://arxiv.org/abs/https://www.pnas.org/content/104/51/20167.full.pdf. https://doi.org/10.1073/pnas.0709640104
Drmač, Z., Gugercin, S.: A new selection operator for the discrete empirical interpolation method–improved a priori error bound and extensions. SIAM J. Sci. Comput. 38(2), 631–648 (2016). https://arxiv.org/abs/https://doi.org/10.1137/15M1019271. https://doi.org/10.1137/15M1019271
Sorensen, D.C., Embree, M.: A deim induced cur factorization. SIAM J. Sci. Comput. 38(3), 1454–1482 (2016). https://arxiv.org/abs/https://doi.org/10.1137/140978430. https://doi.org/10.1137/140978430
Anderson, D., Gu, M.: An efficient, sparsity-preserving, online algorithm for low-rank approximation. In: International Conference on Machine Learning, pp. 156–165 (2017). PMLR
Chen, C., Gu, M., Zhang, Z., Zhang, W., Yu, Y.: Efficient spectrum-revealing cur matrix decomposition. In: International Conference on Artificial Intelligence and Statistics, pp. 766–775 (2020). PMLR
Cohen, M.B., Lee, Y.T., Musco, C., Musco, C., Peng, R., Sidford, A.: Uniform sampling for matrix approximation. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science. ITCS ’15, pp. 181–190. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2688073.2688113
Derezinski, M., Khanna, R., Mahoney, M.W.: Improved guarantees and a multiple-descent curve for the column subset selection problem and the nyström method. arXiv:2002.09073 (2020)
Dereziński, M., Mahoney, M.: Determinantal point processes in randomized numerical linear algebra. Notices Am. Math. Soc. 68, 1 (2021). https://doi.org/10.1090/noti2202
Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P.: Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res. 13(1), 3475–3506 (2012)
Mahoney, M.W., Drineas, P.: Cur matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences 106(3), 697–702 (2009)
Voronin, S., Martinsson, P.-G.: Efficient algorithms for cur and interpolative matrix decompositions. Adv. Computat. Math. 43(3), 495–516 (2017). https://doi.org/10.1007/s10444-016-9494-8
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. STOC ’98, pp. 604–613. Association for Computing Machinery, New York, NY, USA (1998). https://doi.org/10.1145/276698.276876
Martinsson, P.-G., Tropp, J.A.: Randomized numerical linear algebra: foundations and algorithms. Acta Numerica 29, 403–572 (2020). https://doi.org/10.1017/S0962492920000021
Woodruff, D.P.: Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput. Sci. 10(1–2), 1–157 (2014). https://doi.org/10.1561/0400000060
Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized hadamard transform. SIAM J. Matrix Anal. Appl. 34(3), 1301–1340 (2013). https://doi.org/10.1137/120874540
Rokhlin, V., Tygert, M.: A fast randomized algorithm for overdetermined linear least-squares regression. Proceedings of the National Academy of Sciences 105(36), 13212–13217 (2008) https://arxiv.org/abs/https://www.pnas.org/content/105/36/13212.full.pdf. https://doi.org/10.1073/pnas.0804869105
Tropp, J.A.: Improved analysis of the subsampled randomized hadamard transform. Adv. Adaptive Data Anal. 03(01n02), 115–126 (2011). https://doi.org/10.1142/S1793536911000787
Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Computat. Harmonic Anal. 25(3), 335–366 (2008). https://doi.org/10.1016/j.acha.2007.12.002
Clarkson, K.L., Woodruff, D.P.: Low-rank approximation and regression in input sparsity time. J. ACM 63(6) (2017). https://doi.org/10.1145/3019134
Meng, X., Mahoney, M.W.: Low-distortion subspace embeddings in inputsparsity time and applications to robust linear regression. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing. STOC ’13, pp. 91–100. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2488608.2488621
Nelson, J., Nguyên, H.L.: Osnap: Faster numerical linear algebra algorithms via sparser subspace embeddings. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 117–126 (2013). https://doi.org/10.1109/FOCS.2013.21
Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Fixed-rank approximation of a positive-semidefinite matrix from streaming data. Adv. Neural Inf. Process. Syst. 30 (2017)
Kahan, W.: Numerical linear algebra. Canadian Math. Bull. 9(5), 757–801 (1966). https://doi.org/10.4153/CMB-1966-083-2
Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936). https://doi.org/10.1007/BF02288367
Anderson, D., Du, S., Mahoney, M., Melgaard, C., Wu, K., Gu, M.: Spectral gap error bounds for improving CUR matrix decomposition and the Nyström method. In: Lebanon, G., Vishwanathan, S.V.N. (eds.) Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, 38, pp. 19–27. PMLR, San Diego, California, USA (2015). https://proceedings.mlr.press/v38/anderson15.html
Civril, A., Magdon-Ismail, M.: Exponential inapproximability of selecting a maximum volume sub-matrix. Algorithmica 65(1), 159–176 (2013)
Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix and related problems. Theor. Comput. Sci. 410(47), 4801–4811 (2009). https://doi.org/10.1016/j.tcs.2009.06.018
Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. Theory Comput. 2(12), 225–247 (2006). https://doi.org/10.4086/toc.2006.v002a012
Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 329–338 (2010). https://doi.org/10.1109/FOCS.2010.38
Cortinovis, A., Kressner, D.: Low-rank approximation in the frobenius norm by column and row subset selection. SIAM J. Matrix Anal. Appl. 41(4), 1651–1673 (2020)
Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Streaming low-rank matrix approximation with an application to scientific simulation. SIAM J. Sci. Comput. 41(4), 2430–2463 (2019). https://doi.org/10.1137/18M1201068
Musco, C., Musco, C.: Randomized block krylov methods for stronger and faster approximate singular value decomposition. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. NIPS’15, pp. 1396–1404. MIT Press, Cambridge, MA, USA (2015)
Davidson, K.R., Szarek, S.J.: Local operator theory, random matrices and Banach spaces. Handbook of the Geometry of Banach Spaces 1(317–366), 131 (2001)
Rudelson, M.: Invertibility of random matrices: norm of the inverse. Annal. Math. 168(2), 575–600 (2008). Accessed 2022-08-09
Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. ACM 5(4), 339–342 (1958). https://doi.org/10.1145/320941.320947
Trefethen, L.N., Schreiber, R.S.: Average-case stability of gaussian elimination. SIAM Journal on Matrix Analysis and Applications 11(3), 335–360 (1990). https://doi.org/10.1137/0611023
Chan, T.F.: Rank revealing QR factorizations. Linear Algebra and its Applications 88–89, 67–82 (1987). https://doi.org/10.1016/0024-3795(87)90103-0
Hong, Y.P., Pan, C.-T.: Rank-revealing QR factorizations and the singular value decomposition. Math. Computat. 58(197), 213–232 (1992)
Peters, G., Wilkinson, J.H.: On the stability of Gauss-Jordan elimination with pivoting. Commun. ACM 18(1), 20–24 (1975). https://doi.org/10.1145/360569.360653
Geist, G.A., Romine, C.H.: \(lu\) factorization algorithms on distributed memory multiprocessor architectures. SIAM J. Sci. Stat. Comput. 9(4), 639–649 (1988). https://doi.org/10.1137/0909042
Kurzak, J., Luszczek, P., Faverge, M., Dongarra, J.: Lu factorization with partial pivoting for a multicore system with accelerators. IEEE Trans. Parallel Distribut. Syst. 24(8), 1613–1621 (2013). https://doi.org/10.1109/TPDS.2012.242
Grigori, L., Demmel, J.W., Xiang, H.: Calu: A communication optimal LU factorization algorithm. SIAM J. Matrix Anal. Appl. 32(4), 1317–1350 (2011). https://doi.org/10.1137/100788926
Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011 Parallel Processing, pp. 90–109. Springer, Berlin, Heidelberg (2011)
Pan, V.Y., Qian, G., Yan, X.: Random multipliers numerically stabilize Gaussian and block Gaussian elimination: proofs and an extension to low-rank approximation. Linear Algebra Appl. 481, 202–234 (2015). https://doi.org/10.1016/j.laa.2015.04.021
Pan, V.Y., Zhao, L.: Numerically safe Gaussian elimination with no pivoting. Linear Algebra Appl. 527, 349–383 (2017). https://doi.org/10.1016/j.laa.2017.04.007
Bebendorf, M.: Approximation of boundary element matrices. Numerische Mathematik 86, 565–589 (2000)
Tyrtyshnikov, E.: Incomplete cross approximation in the mosaic-skeleton method. Computing 64(4), 367–380 (2000). https://doi.org/10.1007/s006070070031
Pan, C.-T.: On the existence and computation of rank-revealing LU factorizations. Linear Algebra and its Applications 316(1), 199–222 (2000). https://doi.org/10.1016/S0024-3795(00)00120-8. Special Issue: Conference celebrating the 60th birthday of Robert J. Plemmons
Miranian, L., Gu, M.: Strong rank revealing LU factorizations. Linear Algebra Appl. 367, 1–16 (2003). https://doi.org/10.1016/S0024-3795(02)00572-4
Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error cur matrix decompositions. SIAM J. Matrix Anal. Appl. 30(2), 844–881 (2008)
Bien, J., Xu, Y., Mahoney, M.: Cur from a sparse optimization viewpoint. Annual Advances in Neural Information Processing Systems 24: Proceedings of the 2010 Conference (2010)
Wang, S., Zhang, Z.: A scalable cur matrix decomposition algorithm: Lower time complexity and tighter bound. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - 1. NIPS’12, pp. 647–655. Curran Associates Inc., Red Hook, NY, USA (2012)
Boutsidis, C., Woodruff, D.P.: Optimal cur matrix decompositions. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing. STOC ’14, pp. 353–362. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2591796.2591819
Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal column-based matrix reconstruction. SIAM J. Comput. 43(2), 687–717 (2014)
Aizenbud, Y., Shabat, G., Averbuch, A.: Randomized LU decomposition using sparse projections. Comput. & Math. Appl. 72(9), 2525–2534 (2016). https://doi.org/10.1016/j.camwa.2016.09.014
Shabat, G., Shmueli, Y., Aizenbud, Y., Averbuch, A.: Randomized LU decomposition. Appl. Computat. Harmonic Anal. 44(2), 246–272 (2018). https://doi.org/10.1016/j.acha.2016.04.006
Batson, J.D., Spielman, D.A., Srivastava, N.: Twice-ramanujan sparsifiers. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09, pp. 255–262. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1536414.1536451
Ho, K., Olver, S., Kelman, T., Jarlebring, E., TagBot, J., Slevinsky, M.: LowRankApprox,jl: v0.4.3. GitHub (2020)
Meszaros, C.: Meszaros/large, LP sequence: large000 to large036. http://old.sztaki.hu/~meszaros/public_ftp/lptestset/ (2004)
Acknowledgements
The work reported was supported by the Office of Naval Research (N00014-18-1-2354), by the National Science Foundation (DMS-1952735 and DMS-2012606), and by the Department of Energy ASCR (DE-SC0022251). The authors wish to thank Chao Chen, Ke Chen, Yuji Nakatsukasa, and Rachel Ward for valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by: Raymond H. Chan
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dong, Y., Martinsson, PG. Simpler is better: a comparative study of randomized pivoting algorithms for CUR and interpolative decompositions. Adv Comput Math 49, 66 (2023). https://doi.org/10.1007/s10444-023-10061-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-023-10061-z
Keywords
- Low-rank approximation
- Interpolative decomposition
- CUR decomposition
- Randomized numerical linear algebra
- Column pivoted QR factorization
- Rank revealing factorization