Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical analysis for two-phase flow with non-equilibrium capillary pressure in anisotropic porous media

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the convergence analysis of a combined finite volume-non-conforming finite element scheme, to approximate the two incompressible phase flow with dynamic capillary pressure in anisotropic porous media. All diffusion terms are anisotropic and heterogeneous and they are discretized by piecewise linear non-conforming triangular finite elements whereas the mobilities are discretized on dual diamond mesh. The mobilities are approximated by a non-standard way considering the inverse of the mean value of the inverse of mobilities across the interface of the dual mesh. This approximation ensures a priori estimates on the global pressure and on the water saturation. Under the assumption of non-degeneracry of mobilities, we prove the convergence of the combined scheme for the complete two-phase flow including the non-equilibrium capillary pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, K., Settari, A.: Petroleum reservoir simulation. Applied Science Publishers LTD, London (1979)

    Google Scholar 

  2. Amaziane, B., El Ossmani, M.: Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods. Wiley InterScience (www.interscience.wiley.com). https://doi.org/10.1002/num.2029 (2007)

  3. Amirat, Y., Bates, D., Ziani, A.: Convergence of a mixed finite element-finite volume scheme for a parabolic-hyperbolic system modeling a compressible miscible flow in porous media. Numer. Math (2005)

  4. Andreianov, B., Bendahmane, M., Ruiz Baier, R.: Analysis of a finite volume method for a cross-diffusion model in population dynamics, m3AS. Math. Models Meth. Appl. Sci. 21(2), 307–344 (2011)

    Article  Google Scholar 

  5. Angot, P., Dolejsi, V., Feistauer et, M., Felcman, J.: Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43(4), 263–310 (1998)

    Article  MathSciNet  Google Scholar 

  6. Arbogast, T.: Two-phase incompressible flow in a porous medium with various nonhomogeneous boundary conditions, IMA Preprint series 606 (1990)

  7. Bear, J.: Dynamic of flow in porous media. Dover (1986)

  8. Bendahmane, M., Khalil, Z., Saad, M.: Convergence of a finite volume scheme for gas water flow in a multi-dimensional porous media, accepted in M3AS (2010)

  9. Bouadjila, K., Mokrane, A., Saad, A.S., Saad, M.: Numerical analysis of a finite volume scheme for two incompressible phase flow with dynamic capillary pressure. Computers and Mathematics with Applications 75, 3614–3631 (2018)

    Article  MathSciNet  Google Scholar 

  10. Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28, 685–696 (1991)

    Article  MathSciNet  Google Scholar 

  11. Cances, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85(298), 549–580 (2016)

    Article  MathSciNet  Google Scholar 

  12. Cances, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cances, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic keller-segel system. SMAI J. Comput. Math. 3, 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cao, X., Nemadjieu, S., Pop, I.S.: A multipoint flux approximation finite volume scheme for two phase porous media flow with dynamic capillarity. CASA-report 15-33 Eindhoven University of Technology (2015)

  15. Cao, X., Pop, I.S.: Degenerate two-phase porous media flow model with dynamic capillarity. J. Differential Equations 260(3), 2418–2456 (2016)

    Article  MathSciNet  Google Scholar 

  16. Cao, X., Pop, I.S.: Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions. Computers & Mathematics with Applications 69.7, 688–695 (2015)

    Article  MathSciNet  Google Scholar 

  17. Caro, F., Saad, B., Saad, M.: Two-component two-compressible flow in a porous medium. Acta Applicandae Mathematicae 117, 15–46 (2012)

    Article  MathSciNet  Google Scholar 

  18. Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation: single phase, multiphase, and multicomponent flows through porous media. North Holland (1986)

  19. Chen, Z., Ewing, R.E.: Mathematical analysis for reservoirs models. SIAM J. math. Anal. 30, 431–452 (1999)

    Article  MathSciNet  Google Scholar 

  20. Chen, Z.: Degenerate two-phase incompressible flow. Regularity, stability and stabilization. Journal of Differential Equations 186, 345–376 (2002)

    Article  MathSciNet  Google Scholar 

  21. Ciarlet, P.G.: Basic error estimates for elliptic problems, Handbook of numerical analysis, vol. 2, pp 17–351. Elsevier Science B.V., Amesterdam (1991)

    Google Scholar 

  22. Coudière, Y., Saad, M., Uzureau, A.: Analysis of a finite volume method for a bone growth system in vivo. Computers and Mathematics with Applications 66.9, 1581–1594 (2013)

    Article  MathSciNet  Google Scholar 

  23. Evans, L.: Partial differential equations. American Mathematical Society (2010)

  24. Dussan, E.B.V.: Incorporation of the influence of wettability into models of immiscible fluid displacements through a porous media, Physics and Chemistry of Porous Media II, AIP Conference Proceedings, Vol. 154 (1987)

  25. Eymard, R., Gallouë, T., Herbin, R. In: Ciarlet, P., Lions, J.L. (eds.) : Finite volume methods, Handbook of Numerical Analysis, vol. 7, pp 713–1020. North-Holland, Amsterdam (2000)

  26. Eymard, R., Danielle, H., Vohralk, M.: A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numerische Mathematik 105.1, 73–131 (2006)

    Article  MathSciNet  Google Scholar 

  27. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. Mathematical Modelling and Numerical Analysis 37(6), 937–972 (2000)

    Article  MathSciNet  Google Scholar 

  28. Fan, Y., Pop, I.S.: Equivalent formulations and numerical schemes for a class of pseudo-parabolic equations. J. Comput. Appl Math. 246, 86–93 (2013)

    Article  MathSciNet  Google Scholar 

  29. Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic PDEs-application to a turbulence model. Communications on Pure & Applied Analysis, 11(6) (2012)

  30. Galusinski, C., Saad, M.: On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media. Advances Diff. Eq. 9 (11-12), 1235–1278 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Galusinski, C., Saad, M.: Two compressible immiscible fluids in porous media. J. Differential Equations 244, 1741–1783 (2008)

    Article  MathSciNet  Google Scholar 

  32. Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  33. Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resources Research 29.10, 3389–3407 (1993)

    Article  Google Scholar 

  34. Hassanizadeh, S.M., Celia Michael, A., Dahle Helge, K.: Dynamic effect in the capillary pressure–saturation relationship and its impacts on unsaturated flow. Vadose Zone Journal 1.1, 38–57 (2002)

    Google Scholar 

  35. Kirkham, D., Feng, C.L.: Some tests of the diffusion theory, and laws of capillary flow, in soils. Soil Science 67.1, 29–40 (1949)

    Article  Google Scholar 

  36. Koch, J., Ratz, J., Schweizer, B.: Two-phase flow equations with a dynamic capillary pressure. Eur. J. Appl. Math. 24(1), 49–75 (2013)

    Article  MathSciNet  Google Scholar 

  37. Kroener, D., Luckhaus, S.: Flow of oil and water in a porous medium. J. Differential Equations 55, 276–288 (1984)

    Article  MathSciNet  Google Scholar 

  38. Kraus, D.: Two phase flow in homogeneous porous media, Diss. de mestrado. Institut für Wasserbau. Universitat Stuttgart, Germany (2011)

  39. Khalil, Z., Saad, M.: Solutions to a model for compressible immiscible two phase flow in porous media. Electronic Journal of Differential Equations 122, 1–33 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Khalil, Z., Saad, M.: On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media. Nonlinear Analysis 12, 1591–1615 (2011)

    Article  MathSciNet  Google Scholar 

  41. Manthey, S.: Two-phase processes with dynamic effects in porous media-parameter estimation and simulation, Tese de doutorado, Ph. D. thesis, Institut für Wasserbau. Universitat Stuttgart, Germany (2006)

  42. Nasser El Dine, H., Saad, M.: Analysis of a finite volume-finite element method for Darcy-Brinkman two-phase flows in porous media. J. Comput. Appl. Math. 337, 51–72 (2018)

    Article  MathSciNet  Google Scholar 

  43. Moon, D., Kalman, B.M.: Measurement of dynamic capillary pressure and viscosity via the multi-sample micro-slit rheometer. Chem. Eng. Sci. 64.22, 4537–4542 (2009)

    Article  Google Scholar 

  44. Michel, A.: A finite volume scheme for the simulation of two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 41, 1301–1317 (2003)

    Article  MathSciNet  Google Scholar 

  45. Mikelić, A.: A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure. J. Differ. Equ. 248(6), 1561–1577 (2010)

    Article  MathSciNet  Google Scholar 

  46. Saad, A.S., Saad, B., Saad, M.: Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media. Computers and Mathematics with Applications 71, 565–584 (2016)

    Article  MathSciNet  Google Scholar 

  47. Saad, B., Saad, M.: Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media. SIAM J. Numer. Anal. 51(1), 716–741 (2016)

    Article  MathSciNet  Google Scholar 

  48. Saad, B., Saad, M.: A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media. Numerische Mathematik 129.4, 691–722 (2015)

    Article  MathSciNet  Google Scholar 

  49. Spayd, K., Shearer, M.: The Buckley–Leverett equation with dynamic capillary pressure. SIAM J. Appl. Math. 71(4), 1088–1108 (2011)

    Article  MathSciNet  Google Scholar 

  50. Stauffer, F.: Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media. In: IAHR Symposium on Scale Effects in Porous Media, Vol 29. Thessaloniki (1978)

  51. TIAN, S., LEI, G., HE, S., YANG, L.: Dynamic effect of capillary pressure in low permeability reservoirs. Petrol. Explor. Develop. 39(3), 405–411 (2012)

    Article  Google Scholar 

  52. Van Duijn, C., Peletier, L., Pop, I.A.: New class of entropy solutions of the Buckley–Leverett equation. SIAM J. Math. Anal. 39(2), 507–536 (2007)

    Article  MathSciNet  Google Scholar 

  53. Van Duijn, C., Fan, Y., Peletier, L., Pop, I.S.: Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media. Nonlinear Anal. Real World Appl. 14(3), 1361–1383 (2013)

    Article  MathSciNet  Google Scholar 

  54. Wang, Y., Kao, C.-Y.: Central schemes for the modified Buckley–Leverett equation. J. Comput. Sci. 4(1), 12–23 (2013)

    Article  Google Scholar 

  55. Zou, Y., Saad, M., Grondin, F.: Numerical investigation for the effect of deformation and dynamic pressure on the fast drainage of porous materials. European Journal of Environmental and Civil Engineering, pp. 1–20 (2021)

  56. Zou, Y., Saad, M., Grondin, F.: Contribution of the capillary pressure second-order term on fast drying of concrete. Construction and Building Materials 296, 123422 (2021)

    Article  Google Scholar 

  57. Zhang, H., Zegeling, P.A.: A numerical study of two-phase flow models with dynamic capillary pressure and hysteresis. Transp. Porous Media 116 (2), 825–846 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The second and the fourth authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this research through research group no. (RG- 1440-118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Saad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Aihui Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouadjila, K., Saad, A.S., Saad, M. et al. Numerical analysis for two-phase flow with non-equilibrium capillary pressure in anisotropic porous media. Adv Comput Math 48, 56 (2022). https://doi.org/10.1007/s10444-022-09972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09972-0

Keywords

Mathematics Subject Classification (2010)

Navigation