Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Analysis of multivariate Gegenbauer approximation in the hypercube

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with multivariate Gegenbauer approximation of functions defined in the d-dimensional hypercube. Two new and sharper bounds for the coefficients of multivariate Gegenbauer expansion of analytic functions are presented based on two different extensions of the Bernstein ellipse. We then establish an explicit error bound for the multivariate Gegenbauer approximation associated with an q ball index set in the uniform norm. We also consider the multivariate approximation of functions with finite regularity and derive the associated error bound on the full grid in the uniform norm. As an application, we extend our arguments to obtain some new tight bounds for the coefficients of tensorized Legendre expansions in the context of polynomial approximation of parametrized PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mem. Acad. Roy. Belg. 4, 1–103 (1912)

    MATH  Google Scholar 

  3. Bochner, S., Martin, W.T.: Several Complex Variables, Princeton University Press, Princeton (1948)

  4. Bos, L., Levenberg, N.: Bernstein-Walsh theory associated to convex bodies and applications to multivariate approximation theory Funct. Comput. Methods Theory 18(2), 361–388 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bremer, J.: An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments. Adv. Comput. Math. 45(1), 173–211 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T. A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  7. Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. 9(1), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elliott, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comp. 18(86), 274–284 (1964)

    Article  MathSciNet  Google Scholar 

  9. Guo, B.-Q., Sun, W.-W.: The optimal convergence of the h-p version of the finite element method with quasi-uniform meshes. SIAM J. Numer. Anal. 45(2), 698–730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Methods. Wiley, Chichester (1992)

    MATH  Google Scholar 

  11. Liu, W.-J., Wang, L.-L., Li, H.-Y.: Optimal error estimates for Chebyshev approximation of functions with limited regularity in fractional Sobolev-type spaces. Math. Comp. 88(320), 2857–2895 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mason, J.C.: Minimal Projections and Near-Best Approximations by Multivariate Polynomial Expansion and Interpolation, Multivariate Approximation Theory, II (Oberwolfach, 1982), vol. 61, pp. 241–254, Internat. Ser. Numer Math., Birkhäuser, Basel (1982)

  13. Milani, R., Quarteroni, A., Rozza, G.: Reduced basis methods in linear elasticity with many parameters. Comput. Methods Appl. Mech. Eng. 197(51-52), 4812–4829 (2008)

    Article  MATH  Google Scholar 

  14. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

  15. Reichel, L.: Fast solution methods for Fredholm integral equations of the second kind. Numer. Math. 57(1), 719–736 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, J., Wang, L.-L.: Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J. Numer. Anal. 48(3), 1087–1109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tran, H., Webster, C.G., Zhang, G.-N.: Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137(2), 451–493 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trefethen, L.N.: Approximation theory and approximation practice. SIAM (2013)

  19. Trefethen, L.N.: Multivariate polynomial approximation in the hypercube. Proc. Amer. Math. Soc. 145(11), 4837–4844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trefethen, L.N.: Cubature, approximation, and isotropy in the hypercube. SIAM Rev. 59(3), 469–491 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, H.-Y.: On the optimal estimates and comparison of Gegenbauer expansion coefficients. SIAM J. Numer. Anal. 54(3), 1557–1581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, H.-Y.: A new and sharper bound for Legendre expansion of differentiable functions. Appl. Math Lett. 85, 95–102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, H.-Y., Xiang, S.-H.: On the convergence rates of Legendre approximation. Math. Comp. 81(278), 861–877 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X.-F.: Volumes of generalized unit balls. Math. Magazine 78(5), 390–395 (2005)

    Article  MATH  Google Scholar 

  25. Wendland, H.: Numerical Linear Algebra. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  26. Xiang, S.-H.: On error bounds for orthogonal polynomial expansions and Gauss-type quadrature. SIAM J. Numer. Anal. 50(3), 1240–1263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, X.-D., Wang, L.-L., Xie, Z.-Q.: Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 51(3), 1443–1469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for their careful reading and constructive suggestions. Haiyong Wang also thanks the hospitality of the School of Mathematical Sciences at Fudan University where the present research was initiated.

Funding

Haiyong Wang was supported by National Natural Science Foundation of China under grant number 11671160. Lun Zhang was partially supported by National Natural Science Foundation of China under grant number 11822104, by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and by Grant EZH1411513 from Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Wang.

Additional information

Communicated by: Yuesheng Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, L. Analysis of multivariate Gegenbauer approximation in the hypercube. Adv Comput Math 46, 53 (2020). https://doi.org/10.1007/s10444-020-09792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09792-0

Keywords

Mathematics Subject Classification (2010)

Navigation