Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A characteristic finite element two-grid algorithm for a compressible miscible displacement problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium. A mixed finite element method is employed to approximate the pressure and the Darcy velocity, and a characteristic finite element method is used to approximate the concentration. Twice Newton iteration is applied on the fine grid to linearize the fully discrete problem using the coarse-grid solution as the initial guess. Moreover, the Lq error estimates are conducted for the pressure, Darcy velocity, and concentration variables in the two-grid solutions. It is shown both theoretically and numerically that the coarse space can be extremely coarse, with no loss in the order of accuracy, and the two-grid algorithm still achieves the optimal approximation as long as the mesh sizes satisfy \(H = O(h^{\frac {1}{4}})\). The numerical results show that this algorithm is very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO: Anal. Numer. 2, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  2. Chen, L., Chen, Y.: Two-grid discretization scheme for nonlinear reaction diffusion equations by mixed finite element methods. Adv. Appl. Math. Mech. 6(2), 203–219 (2014)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Hu, H.: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Commun. Comput. Phys. 19(5), 1503–1528 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Mech Engng 57, 193–209 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Liu, H., Liu, S.: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Internat. J. Numer. Methods Eng. 69, 408–422 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Ewing, R.E.: Mathmatical analysis for reservior models. SIAM J. Math. Anal. 30(2), 431–453 (1999)

    Article  MathSciNet  Google Scholar 

  7. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    Article  MathSciNet  Google Scholar 

  8. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer Anal. 26, 1487–1512 (1989)

    Article  MathSciNet  Google Scholar 

  9. Ewing, E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer Anal. 17, 351–365 (1980)

    Article  MathSciNet  Google Scholar 

  10. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Simulation of miscible displacement using mixed methods and a modified method of characteristics. Paper SPE 12241, Proceedings, Seventh SPE Symposium on Reservoir Simulation, Society of petroleum Engineers, Dallas, TX, pp. 71–81 (1983)

  11. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)

    Article  MathSciNet  Google Scholar 

  12. He, Y: Two-level method based on finite element and crank-nicolson extrapolation for the time-depent navier-stokes equations. SIAM J. Numer. Anal. 41(4), 1263–1285 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hu, H.: Two-grid method for two-dimensional nonlinear Schrödinger equation by finite element method. Numer. Methods Partial Diff. Equ. 34(2), 385–400 (2018)

    Article  Google Scholar 

  14. Hu, H.: Two-grid method for two-dimensional nonlinear Schrödinger equation by mixed finite element method. Comput. Math. Appl. 75(3), 900–917 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hu, H., Chen, Y., Zhou, J.: Two-grid method for miscible displacement problem by mixed finite element methods and finite element method of characteristics. Comput. Math. Appl. 72(11), 2694–2715 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hu, H., Fu, Y., Zhou, J.: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach. Numer. Algor., 1–36 (2018)

  17. Jin, J., Shu, S., Xu, J.: A two-grid discretization method for decoupling systems of partial differential equations. Math. Comput. 75, 1617–1626 (2006)

    Article  MathSciNet  Google Scholar 

  18. Douglas, J. Jr: Simulation of miscible displacement in porous media by a modified method of characteristic procedure. Numer. Anal., 64–70 (1981)

  19. Douglas, J. Jr: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20, 681–696 (1983)

    Article  MathSciNet  Google Scholar 

  20. Douglas, J. Jr, Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO: Analyse Numerique 17, 17–33 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Douglas, J. Jr, Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41(164), 441–459 (1983)

    Article  MathSciNet  Google Scholar 

  22. Douglas, J. Jr, Roberts, J.E.: Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985)

    Article  Google Scholar 

  23. Douglas, J. Jr., Russell, T.F.: Numerical methods for convention-dominated diffusion problems base on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885, 10 (1982)

    Article  MathSciNet  Google Scholar 

  24. Kou, J., Sun, S.: Analysis of a combined mixed finite element and discontinuous galerkin method for incompressible two-phase flow in porous media. Math. Methods Appl. Sci. 37(7), 962–982 (2014)

    Article  MathSciNet  Google Scholar 

  25. Liu, S., Chen, Y., Huang, Y., Zhou, J.: Two-grid methods for miscible displacement problem by galerkin methods and mixed finite-element methods. Int. J. Comput. Math. 95(8), 1453–1477 (2018)

    Article  MathSciNet  Google Scholar 

  26. Xu, J.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  Google Scholar 

  27. Xu, J.: Two-grid discretization techniques for linear and non-linear pdes. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  Google Scholar 

  28. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70(233), 17–25 (2011)

    Article  MathSciNet  Google Scholar 

  29. Yang, J., Chen, Y.: Superconvergence of a combined mixed finite element and discontinuous galerkin method for a compressible miscible displacement problem. Acta Mathematicae Applicatae Sinica. English Series 27(3), 481–494 (2011)

    Article  MathSciNet  Google Scholar 

  30. Yang, J., Chen, Y., Xiong, Z.: Superconvergence of a full-discrete combined mixed finite element and discontinuous galerkin method for a compressible miscible displacement problem. Numer. Methods Partial Diff. Equ. 29(6), 1801–1820 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Yuan, Y.R.: Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions. Sci. Bull. China 22, 2027–2032 (1996)

    Article  Google Scholar 

  32. Yuan, Y.R.: Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media. Syst. Sci. Math. Sci. China 4, 299–306 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Zeng, J., Chen, Y., Hu, H.: Two-grid method for compressible miscible displacement problem by cfemcmfem. J. Comput. Appl. Math. 337, 175–189 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (11671157, 11931003, 41974133, 11971410) and the Natural Science Foundation of Guangdong province, China (2018A0303100016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Communicated by: Ivan Graham

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Chen, Y. & Huang, Y. A characteristic finite element two-grid algorithm for a compressible miscible displacement problem. Adv Comput Math 46, 15 (2020). https://doi.org/10.1007/s10444-020-09768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09768-0

Keywords

Mathematics Subject Classification (2010)

Navigation