Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Iteration penalty method for the incompressible Navier-Stokes equations with variable density based on the artificial compressible method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Based on the artificial compressible method, an iteration penalty semi-discrete scheme is proposed for the numerical simulations of the incompressible Navier-Stokes equations with variable density. Compared with the classical penalty scheme, the main feature is that the proposed iteration penalty scheme is of the first-order temporal convergence rate for any penalty parameter ε > 0 independent of the time step size τ. Numerical results are given to illustrate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, R., Shi, F.: Two-level iteration penalty methods for the incompressible flows. Appl. Math. Model. 39, 630–641 (2015)

    Article  MathSciNet  Google Scholar 

  2. An, R.: Error analysis of a time-splitting method for the incompressible flows with variable density. Appl. Numer. Math. 150, 384–395 (2020). https://doi.org/10.1016/j.apnum.2019.10.015

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, Y.Q., Li, Y., An, R.: Two-Level iteration penalty and variational multiscale method for steady incompressible flows. Journal of Applied Analysis and Computation 6, 607–627 (2016)

    MathSciNet  Google Scholar 

  4. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Stud. Math. Appl. 22. North-Holland, Amsterdam (1990). Translated from the Russian

    Google Scholar 

  5. X. L. Cheng, Abdul, W.S.: Analysis of the iterative penalty method for the Stokes equations. Appl. Math. Lett. 19, 1024–1028 (2006)

    Article  MathSciNet  Google Scholar 

  6. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  Google Scholar 

  7. Guermond, J.L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228, 2834–2846 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  9. He, Y.N.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74, 1201–1216 (2005)

    Article  MathSciNet  Google Scholar 

  10. He, Y.N., Li, J.: A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations. J. Comput. Appl. Math. 235, 708–725 (2010)

    Article  MathSciNet  Google Scholar 

  11. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  12. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 1. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  13. Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32, 386–403 (1995)

    Article  MathSciNet  Google Scholar 

  14. Temam, R.: Navier-Stokes Equations. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  15. Walkington, N.J.: Convergence of the discontinuous Galerkin method for discontinuous solutions. SIAM J. Numer. Anal. 42, 180–1817 (2004)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China with Grant No. 11771337 and by Zhejiang Provincial Natural Science Foundation with Grant Nos. LY18A010021 and LY16A010017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong An.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, R. Iteration penalty method for the incompressible Navier-Stokes equations with variable density based on the artificial compressible method. Adv Comput Math 46, 5 (2020). https://doi.org/10.1007/s10444-020-09757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09757-3

Keywords

Mathematics Subject Classification (2010)

Navigation