Abstract
In this article, we develop an hp-adaptive refinement procedure for Trefftz discontinuous Galerkin methods applied to the homogeneous Helmholtz problem. Our approach combines not only mesh subdivision (h–refinement) and local basis enrichment (p–refinement), but also incorporates local directional adaptivity, whereby the elementwise plane wave basis is aligned with the dominant scattering direction. Numerical experiments based on employing an empirical a posteriori error indicator clearly highlight the efficiency of the proposed approach for various examples.
Similar content being viewed by others
References
Agrawal, A., Hoppe, R.H.W.: Optimization of plane wave directions in plane wave discontinuous Galerkin methods for the Helmholtz equation. Port Math. 74, 69–89 (2017)
Amara, M., Chaudhry, S., Diaz, J., Djellouli, R., Fiedler, S.L.: A local wave tracking strategy for efficiently solving mid- and high-frequency Helmholtz problems. Comput. Methods Appl. Mech. Engrg. 276, 473–508 (2014)
Amara, M., Djellouli, R., Farhat, C.: Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems. SIAM J. Numer. Anal. 47(2), 1038–1066 (2009)
Babuška, F., Ihlenburg, F., Strouboulis, T., Gangaraj, S.K.: A posteriori error estimation for finite element solutions of Helmholtz’ equation I. The quality of local indicators and estimators. Internat. J. Numer Methods Engrg. 40(18), 3443–3462 (1997)
Babuška, F., Ihlenburg, F., Strouboulis, T., Gangaraj, S.K.: A posteriori error estimation for finite element solutions of Helmholtz’ equation II. Estimation of the pollution error. Internat. J. Numer Methods Engrg. 40(21), 3883–3900 (1997)
Betcke, T., Phillips, J.: Adaptive plane wave discontinuous Galerkin methods for Helmholtz problems. In: Proceedings of the 10th International Conference on the Mathematical and Numerical Aspects of Waves, pp. 261–264 (2011)
Betcke, T., Phillips, J.: Approximation by dominant wave directions in plane wave methods. Technical report, UCL, 2012. Available at http://discovery.ucl.ac.uk/1342769/
Braess, D.: Finite elements. Theory, fast solvers, and applications in solid mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)
Cessenat, O., Després, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer Anal. 35(1), 255–299 (1998)
Congreve, S., Gedicke, J., Perugia, I.: Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods. In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2017, the 12th European Conference on Numerical Mathematics and Advanced Applications. Springer, Voss (2018)
Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comp. Meth. Appl Math. 13(3), 333–347 (2013)
Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)
Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math. 94(1), 67–92 (2003)
Georgoulis, E., Hall, E., Houston, P.: Discontinuous Galerkin methods for advection–diffusion–reaction problems on anisotropically refined meshes. SIAM J. Sci Comput. 30(1), 246–271 (2007)
Gittelson, C.J.: Plane wave discontinuous Galerkin methods. Master’s thesis, ETH Zurich, (2008) http://www.sam.math.ethz.ch/hiptmair/StudentProjects/Gittelson/thesis.pdf
Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM Math. Model. Numer. Anal. 43 (2), 297–331 (2009)
Hall, E.J.C.: Anisotropic Adaptive Refinement For Discontinuous Galerkin Methods. PhD thesis, Department of Mathematics University of Leicester (2007)
Hiptmair, R., Moiola, A., Perugia, I.: Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl. Numer. Math. 79, 79–91 (2014)
Hiptmair, R., Moiola, A., Perugia, I.: A survey of Trefftz methods for the Helmholtz equation. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building bridges: connections and challenges in modern approaches to numerical partial differential equations, pp 237–279. Springer, Cham (2016)
Houston, P.: AptoFEM finite element analysis software (2017) http://www.aptofem.com [Online]
Houston, P., Süli, E.: A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech Engrg. 194 (2–5), 229–243 (2005)
Huttunen, T., Monk, P., Kaipio, J.P.: Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182(1), 27–46 (2002)
Kapita, S., Monk, P., Warburton, T.: Residual-based adaptivity and PWDG methods for the Helmholtz equation. SIAM J. Sci. Comput., 37(3) (2015)
Luostari, T., Huttunen, T., Monk, P.: Improvements for the ultra weak variational formulation. Internat. J. Numer Methods Engrg. 94(6), 598–624 (2013)
Melenk, J.M., Wohlmuth, B.I.: On residual-based a posteriori error estimation in hp-FEM. Adv. Comp. Math. 15(1–4), 311–331 (2001)
Mitchell, W.F., McClain, M.A.: A comparison of hp-adaptive strategies for elliptic partial differential equations. Technical Report NISTIR 7824 National Institute of Standards and Technology (2011)
Mitchell, W.F., McClain, M.A.: A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Trans. Math Softw. 41(1), 2,1–2,39 (2014)
Moiola, A., Hiptmair, R., Perugia, I.: Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math Phys. 62(5), 809–837 (2011)
Sauter, S., Zech, J.: A posteriori error estimation of hp-dG, finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)
Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1), 107–125 (2004)
Womersley, R.S.: Extremal (maximum determinant) points on the sphere S 2. http://web.maths.unsw.edu.au/rsw/Sphere/Extremal/New/index.html [Online] (2007)
Zech, J.: A posteriori error estimation of hp-DG finite element methods for highly indefinite Helmholtz problems. Master’s thesis, Universität Zürich. http://www.math.uzh.ch/compmath/index.php?id=dipl (2014)
Funding
S. Congreve and I. Perugia have been funded by the Austrian Science Fund (FWF) through the project P29197-N32. I. Perugia has also been funded by the FWF through the project F 65.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Jan Hesthaven
Rights and permissions
About this article
Cite this article
Congreve, S., Houston, P. & Perugia, I. Adaptive refinement for hp–Version Trefftz discontinuous Galerkin methods for the homogeneous Helmholtz problem. Adv Comput Math 45, 361–393 (2019). https://doi.org/10.1007/s10444-018-9621-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-018-9621-9
Keywords
- Homogeneous Helmholtz problem
- Discontinuous Galerkin methods
- Trefftz methods
- Adaptivity
- hp-finite element methods