Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we aim to derive some error bounds for Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. Thanks to the asymptotics of the coefficients in the Chebyshev series expansions of analytic functions or functions of limited regularities, these bounds are established by the aliasings of Fourier transforms on Chebyshev polynomials together with van der Corput-type lemmas. These errors share the property that the errors decrease with the increase of the frequency ω. Moreover, for fixed ω, the order of the error bound related to the number of interpolation nodes N is attainable, while for fixed N, the order of the error on ω is attainable too, which is verified by some functions of limited regularities. In particular, if the functions are analytic in Bernstein ellipses, then the errors decay exponentially. Furthermore, for large values of ω, the accuracy can be further improved by applying a special Hermite interpolants in the Filon-Clenshaw-Curtis quadrature, which can be efficiently evaluated by the Fast Fourier Transform (FFT) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mem. Cl. Sci. Acad. Roy. Belg. 4, 1–103 (1912)

    Google Scholar 

  2. Boyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, New York (2000)

    Google Scholar 

  3. Bruno, O., Haslam, M.C.: Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies, and glancing incidences. J. Opt. Soc. Am. A 26, 658–68 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency scattering. Acta Numerica 21, 89–305 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  6. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integral Integration, 2nd edn. Academic Press (1984)

  7. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon-Clenshaw-Curtis rules for highly-oscillatory integrals. IMA J. Numer. Anal. 31, 1253–1280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Domínguez, V., Graham, I.G., Kim, M.: Filon-Clenshaw-Curtis rules for highly-oscillatory integrals with algebraic singularities and stationary points. SIAM J. Numer. Anal. 51, 1542–1566 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Domínguez, V.: Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities. J. Comput. Appl. Math. 261, 299–319 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iserles, A.: On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly-oscillatory integrals using derivatives. Proc. Royal Soc. A 461, 1383–1399 (2005)

    Article  MATH  Google Scholar 

  13. Lozier, D.W.: Numerical solution of linear difference equations. Report NBSIR 80-1976, Math. Analysis Division, Nat. Bureau of Standards (1980)

  14. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, New York (2003)

    MATH  Google Scholar 

  15. Oliver, J.: The numerical solution of linear recurrence relations. Numer. Math. 11, 349–360 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  16. Piessens, R.: Computing integral transforms and solving integral equations using Chebyshev polynomial approximations. J. Comput. Appl. Math. 121, 113–124 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Piessens, R., Branders, M.: Computation of Fourier transform integrals using Chebyshev series expansions. Computing 32, 177–186 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Piessens, R., Branders,M.: On the computation of Fourier transforms of singular functions. J. Comput. Appl. Math. 43, 159–169 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Spence, E.A., Chandler-Wilde, S.N., Graham, I.G., Smyshlyaev, V.P.: A new frequency-uniform coercive boundary integral equation for acoustic scattering. Commun. Pure Appl. Math. 64(10), 1384–1415 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  21. Stein, E., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press (2005)

  22. Tao, T.: An Introduction to Measure Theory. American Mathematical Society (2011)

  23. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM (2013)

  25. Xiang, S., Chen, X., Wang, H.: Error bounds for approximation in Chebyshev points. Numer. Math. 116, 463–491 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xiang, S., Bornemann, F.: On the convergence rates of Gauss and Clenshaw-Curtis quadrature for functions of limited regularity. SIAM J. Numer. Anal. 50, 2581–2587 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xiang, S., Cho, Y.,Wang, H., Brunner, H.: Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Anal. 31, 1281–1314 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhuang Xiang or Guo He.

Additional information

Communicated by: A. Iserles

This paper was supported partly by NSF of China (No.11371376) and partly by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (KRF-2013053358).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., He, G. & Cho, Y.J. On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. Adv Comput Math 41, 573–597 (2015). https://doi.org/10.1007/s10444-014-9377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9377-9

Keywords

Mathematics Subject Classifications (2010)

Navigation