Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Assessment of a Four-View Mammographic Image Feature Based Fusion Model to Predict Near-Term Breast Cancer Risk

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop and assess a new quantitative four-view mammographic image feature based fusion model to predict the near-term breast cancer risk of the individual women after a negative screening mammography examination of interest. The dataset included fully-anonymized mammograms acquired on 870 women with two sequential full-field digital mammography examinations. For each woman, the first “prior” examination in the series was interpreted as negative (not recalled) during the original image reading. In the second “current” examination, 430 women were diagnosed with pathology verified cancers and 440 remained negative (“cancer-free”). For each of four bilateral craniocaudal and mediolateral oblique view images of left and right breasts, we computed and analyzed eight groups of global mammographic texture and tissue density image features. A risk prediction model based on three artificial neural networks was developed to fuse image features computed from two bilateral views of four images. The risk model performance was tested using a ten-fold cross-validation method and a number of performance evaluation indices including the area under the receiver operating characteristic curve (AUC) and odds ratio (OR). The highest AUC = 0.725 ± 0.026 was obtained when the model was trained by gray-level run length statistics texture features computed on dense breast regions, which was significantly higher than the AUC values achieved using the model trained by only two bilateral one-view images (p < 0.02). The adjustable OR values monotonically increased from 1.0 to 11.8 as model-generated risk score increased. The regression analysis of OR values also showed a significant increase trend in slope (p < 0.01). As a result, this preliminary study demonstrated that a new four-view mammographic image feature based risk model could provide useful and supplementary image information to help predict the near-term breast cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Al-Kadi, O. S., and D. Watson. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans. Biomed. Eng. 55:1822–1830, 2008.

    Article  PubMed  Google Scholar 

  2. Amir, E., O. C. Freedman, B. Seruga, and D. G. Evans. Assessing women at high risk of breast cancer: a review of risk assessment models. J. Natl Cancer Inst. 102:680–691, 2010.

    Article  PubMed  Google Scholar 

  3. Berg, W. A., C. Campassi, P. Langenberg, and M. J. Sexton. Breast Imaging Reporting and Data System: inter- and intraobserver variability in feature analysis and final assessment. AJR Am. J. Roentgenol. 174:1769–1777, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Berlin, L., and F. M. Hall. More mammography muddle: emotions, politics, science, costs, and polarization. Radiology 255:311–316, 2010.

    Article  PubMed  Google Scholar 

  5. Bertrand, K. A., R. M. Tamimi, C. G. Scott, M. R. Jensen, V. S. Pankratz, D. Visscher, A. Norman, F. Couch, J. Shepherd, B. Fan, Y. Y. Chen, L. Ma, A. H. Beck, S. R. Cummings, K. Kerlikowske, and C. M. Vachon. Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res. 15:R104, 2013; ((Epub ahead of print)).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boughey, J. C., L. C. Hartmann, S. S. Anderson, A. C. Degnim, R. A. Vierkant, C. A. Reynolds, M. H. Frost, and V. S. Pankratz. Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia. J. Clin. Oncol. 28:3591–3596, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boyd, N. F., L. J. Martin, M. J. Yaffe, and S. Minkin. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 13:223, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brawley, O. W. Risk-based mammography screening: an effort to maximize the benefits and minimize the harms. Ann. Intern. Med. 156:662–663, 2012.

    Article  PubMed  Google Scholar 

  9. Byng, J. W., N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe. The quantitative analysis of mammographic densities. Phys. Med. Biol. 39:1629–1638, 1994.

    Article  CAS  PubMed  Google Scholar 

  10. Chang, Y.-H., X.-H. Wang, L. A. Hardesty, T. S. Chang, W. R. Poller, W. F. Good, and D. Gur. Computerized assessment of tissue composition on digitized mammograms. Acad. Radiol. 9:899–905, 2002.

    Article  PubMed  Google Scholar 

  11. Chen, J., S. Shan, C. He, G. Zhao, M. Pietikainen, X. Chen, and W. Gao. WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32:1705–1720, 2010.

    Article  PubMed  Google Scholar 

  12. Clausi, D. A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28:45–62, 2002.

    Article  Google Scholar 

  13. Daugman, J. G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 36:1169–1179, 1988.

    Article  Google Scholar 

  14. DeLong, E. R., D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 11:837–845, 1988.

    Article  Google Scholar 

  15. Gail, M. H. Personalized estimates of breast cancer risk in clinical practice and public health. Stat. Med. 30:1090–1104, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gail, M. H., and P. L. Mai. Comparing breast cancer risk assessment models. J. Natl Cancer Inst. 102:665–668, 2010.

    Article  PubMed  Google Scholar 

  17. Gierach, G. L., H. Li, J. T. Loud, M. H. Greene, C. K. Chow, L. Lan, S. A. Prindiville, J. Eng-Wong, P. W. Soballe, C. Giambartolomei, P. L. Mai, C. E. Galbo, K. Nichols, K. A. Calzone, O. I. Olopade, M. H. Gail, and M. L. Giger. Relationships between computer-extracted mammographic texture pattern features and BRCA1/2 mutation status: a cross-sectional study. Breast Cancer Res. 16:424, 2014.

    PubMed  PubMed Central  Google Scholar 

  18. Häberle, L., F. Wagner, P. Fasching, S. Jud, K. Heusinger, C. Loehberg, A. Hein, C. Bayer, C. Hack, M. Lux, K. Binder, M. Elter, C. Münzenmayer, R. Schulz-Wendtland, M. Meier-Meitinger, B. Adamietz, M. Uder, M. Beckmann, and T. Wittenberg. Characterizing mammographic images by using generic texture features. Breast Cancer Res. 14:1–12, 2012.

    Article  Google Scholar 

  19. Haghighat, M., S. Zonouz, and M. Abdel-Mottaleb. Identification using encrypted biometrics. In: Computer Analysis of Images and Patterns, edited by R. Wilson, E. Hancock, A. Bors, and W. Smith. Berlin: Springer, 2013, pp. 440–448.

    Chapter  Google Scholar 

  20. Haralick, R. M., K. Shanmugam, and I. Dinstein. Texture features for image classification. IEEE Trans. Syst. Man Cybernet. 3:610–621, 1973.

    Article  Google Scholar 

  21. Heine, J. J., C. G. Scott, T. A. Sellers, K. R. Brandt, D. J. Serie, F. F. Wu, M. J. Morton, B. A. Schueler, F. J. Couch, J. E. Olson, V. S. Pankratz, and C. M. Vachon. A novel automated mammographic density measure and breast cancer risk. J. Natl. Cancer Inst. 104:1028–1037, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jørgensen, K. J. Is the tide turning against breast screening? Breast Cancer Res. 14:107–107, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, H., M. L. Giger, O. I. Olopade, and M. R. Chinander. Power spectral analysis of mammographic parenchymal patterns for breast cancer risk assessment. J. Digit. Imaging 21:145–152, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, J., L. Szekely, L. Eriksson, B. Heddson, A. Sundbom, K. Czene, P. Hall, and K. Humphreys. High-throughput mammographic-density measurement: a tool for risk prediction of breast cancer. Breast Cancer Res. 14:R114, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Manduca, A., M. J. Carston, J. J. Heine, C. G. Scott, V. S. Pankratz, K. R. Brandt, T. A. Sellers, C. M. Vachon, and J. R. Cerhan. Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev. 18:837–845, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marcelja, S. Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. 70:1297–1300, 1980.

    Article  CAS  PubMed  Google Scholar 

  27. Mudigonda, N. R., R. M. Rangayyan, and J. E. Desautels. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans. Med. Imaging 19:1032–1043, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Nielsen, M., G. Karemore, M. Loog, J. Raundahl, N. Karssemeijer, J. D. Otten, M. A. Karsdal, C. M. Vachon, and C. Christiansen. A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol. 35:381–387, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Pankratz, V. S., A. C. Degnim, R. D. Frank, M. H. Frost, D. W. Visscher, R. A. Vierkant, T. J. Hieken, K. Ghosh, Y. Tarabishy, C. M. Vachon, D. C. Radisky, and L. C. Hartmann. Model for individualized prediction of breast cancer risk after a benign breast biopsy. J. Clin. Oncol. 33:923–929, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Passaperuma, K., E. Warner, K. A. Hill, A. Gunasekara, and M. J. Yaffe. Is mammographic breast density a breast cancer risk factor in women with BRCA mutations? J. Clin. Oncol. 28:3779–3783, 2010.

    Article  CAS  PubMed  Google Scholar 

  31. Rumelhart, D. E., G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature 323:533–536, 1986.

    Article  Google Scholar 

  32. Schousboe, J. T., K. Kerlikowske, A. Loh, and S. R. Cummings. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann. Intern. Med. 155:10–20, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Soh, L. K., and C. Tsatsoulis. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37:780–795, 1999.

    Article  Google Scholar 

  34. Steyerberg, E. W., A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obuchowski, M. J. Pencina, and M. W. Kattan. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21:128–138, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tan, M., J. Pu, and B. Zheng. Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme. Phys. Med. Biol. 59:4357–4373, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan, M., B. Zheng, P. Ramalingam, and D. Gur. Prediction of near-term breast cancer risk based on bilateral mammographic feature asymmetry. Acad. Radiol. 20:1542–1550, 2013.

    Article  PubMed  Google Scholar 

  37. Tang, X. Texture information in run-length matrices. IEEE Trans. Image Proc. 7:1602–1609, 1998.

    Article  CAS  Google Scholar 

  38. Varela, C., S. Timp, and N. Karssemeijer. Use of border information in the classification of mammographic masses. Phys. Med. Biol. 51:425–441, 2006.

    Article  CAS  PubMed  Google Scholar 

  39. Ververidis, D., and C. Kotropoulos. Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition. Signal Process. 88:2956–2970, 2008.

    Article  Google Scholar 

  40. Wang, X., D. Lederman, J. Tan, X. H. Wang, and B. Zheng. Computerized prediction of risk for developing breast cancer based on bilateral mammographic breast tissue asymmetry. Med. Eng. Phys. 33:934–942, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei C.-H., Y. Li and C.-T. Li. Effective Extraction of Gabor Features for Adaptive Mammogram Retrieval. In: IEEE International Conference on Multimedia and Expo, Beijing, 2007, pp. 1503–1506.

  42. Wei, J., H. P. Chan, Y. T. Wu, et al. Association of computerized mammographic parenchymal pattern measure with breast cancer risk: a pilot case–control study. Radiology 260:42–49, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wei, X. Gray Level Run Length Matrix Toolbox v1.0. Beijing Aeronautical Technology Research Center, http://www.mathworks.com/matlabcentral/fileexchange/17482-gray-level-run-length-matrix-toolbox. Last accessed: 16 February 2015, 2007.

  44. Zheng, B., J. H. Sumkin, M. L. Zuley, D. Lederman, X. Wang, and D. Gur. Computer-aided detection of breast masses depicted on full-field digital mammograms: a performance assessment. Br. J. Radiol. 85:e153–e161, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, B., J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur. Bilateral mammographic density asymmetry and breast cancer risk: a preliminary assessment. Eur. J. Radiol. 81:3222–3228, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study is supported in part by Grant R01 CA160205 from the National Cancer Institute, National Institutes of Health. The authors also acknowledge the support received from the Peggy and Charles Stephenson Cancer Center, University of Oklahoma.

Conflict of interest

There are no conflicts of interest in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxine Tan.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Pu, J., Cheng, S. et al. Assessment of a Four-View Mammographic Image Feature Based Fusion Model to Predict Near-Term Breast Cancer Risk. Ann Biomed Eng 43, 2416–2428 (2015). https://doi.org/10.1007/s10439-015-1316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1316-5

Keywords

Navigation