Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Magnetocardiography Based Spatiotemporal Correlation Analysis is Superior to Conventional ECG Analysis for Identifying Myocardial Injury

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) particular from tiny, non Q-wave myocardial infarction may lack striking infarct pattern. Spatiotemporal correlation analysis (SCA) of multichannel magnetocardiogram (MCG) is a high-resolution “magnifying glass” to analyze homogeneity of repolarization. SCA involves full 4D spatiotemporal information to identify abnormalities as empirically done by eye in conventional ECG—but on an advanced level of analysis. We compared the discriminatory performance of SCA to ECG analysis in identifying myocardial infarction. Eleven SCA parameters were taken from signal averaged 31-channel MCG and compared to infarct indicators of ECG’s in 178 subjects: 108 patients (76 males, mean age 62 years) after myocardial infarction (16–64 d) and 70 controls (36 males, mean age 46 years). SCA improves the detection of myocardial injury: in 72.5% ECG (sensitivity 68.6%, specificity 56%) and in 80.2% SCA parameters (sensitivity 72.6%, specificity 64%) separated patients from controls. SCA is applicable for the analysis of de- and repolarization of cardiac mapping data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Bruder H., Scholz B., Abraham-Fuchs K. (1994) The influence of inhomogeneous volume conductor models on the ECG and the MCG. Phys. Med. Biol. 39(11):1949–1968. doi:10.1088/0031-9155/39/11/010

    Article  PubMed  CAS  Google Scholar 

  2. Casolo G., Minneci S., Manta R. et al (2006) Identification of the ischemic etiology of heart failure by cardiovascular magnetic resonance imaging: diagnostic accuracy of late gadolinium enhancement. Am. Heart J. 151(1):101–108. doi:10.1016/j.ahj.2005.03.068

    Article  PubMed  Google Scholar 

  3. Ertl G., Frantz S. (2005) Healing after myocardial infarction. Cardiovasc. Res. 66(1):22–32. doi:10.1016/j.cardiores.2005.01.011

    Article  PubMed  CAS  Google Scholar 

  4. Gibbons R. J., Balady G. J., Bricker J. T. et al. (2002) ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice. J. Am. Coll. Cardiol. 40(8):1531–1540. doi:10.1016/S0735-1097(02)02164-2

    Article  PubMed  Google Scholar 

  5. Goernig M., Tute C., Liehr M., Lau S. et al. (2006) Spatiotemporal correlation analyses: a new procedure for standardisation of DC magnetocardiograms. Biomed. Tech. 51(4):198–200. doi:10.1515/BMT.2006.036

    Article  Google Scholar 

  6. Gomez J. F., Zareba W., Moss A. J. et al. (2007) Prognostic value of location and type of myocardial infarction in the setting of advanced left ventricular dysfunction. Am. J. Cardiol. 99 (1):642–646. doi:10.1016/j.amjcard.2006.10.021

    Article  PubMed  Google Scholar 

  7. Ibrahim T., Bulow H. P., Hackl T. et al. (2006) Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J. Am. Coll. Cardiol. 49:208–216. doi:10.1016/j.jacc.2006.08.047

    Article  PubMed  Google Scholar 

  8. Kaandorp T. A., Lamb H. J., Viergever E. P. et al. (2007) Scar tissue on contrast-enhanced MRI predicts left ventricular remodelling after acute infarction. Heart 93(3):375–376. doi:10.1136/hrt.2006.097675

    Article  PubMed  Google Scholar 

  9. Liehr M., Haueisen J., Goernig M. et al. (2005) Vortex shaped current sources in a physical torso phantom. Ann. Biomed. Eng. 33(2): 240–247. doi:10.1007/s10439-005-8983-6

    Article  PubMed  Google Scholar 

  10. Michaelides A. P., Psomadaki Z. D., Dilaveris P. E. et al. (1999) Improved detection of coronary artery disease by exercise electrocardiography with the use of right precordial leads. N. Engl. J. Med. 340(5):340–345. doi:10.1056/NEJM199902043400502

    Article  PubMed  CAS  Google Scholar 

  11. Park J. W., Hill P. M., Chung N. et al. (2005) Magnetocardiography predicts coronary artery disease in patients with acute chest pain. Ann. Noninvasive Electrocardiol. 110(3):312–323. doi:10.1111/j.1542-474X.2005.00634.x

    Article  Google Scholar 

  12. Simson M. B. (1992) Noninvasive identification of patients at high risk for sudden cardiac death: signal-averaged electrocardiography. Circulation 85(1 Suppl):145–151

    Google Scholar 

  13. Tolstrup K., Madsen B. E., Ruiz J. A., et al. (2006) Non-invasive resting magnetocardiographic imaging for the rapid detection of ischemia in subjects presenting with chest pain. Cardiology 106:270–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Goernig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goernig, M., Liehr, M., Tute, C. et al. Magnetocardiography Based Spatiotemporal Correlation Analysis is Superior to Conventional ECG Analysis for Identifying Myocardial Injury. Ann Biomed Eng 37, 107–111 (2009). https://doi.org/10.1007/s10439-008-9598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9598-5

Keywords

Navigation