Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review

结构设计驱动的橡胶类复合材料柔性传感器压阻性能设计 研究进展

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Recently, flexible pressure and strain sensors have attracted the attention of researchers because of their high sensitivity, broad strain-sensing ability, and various forms. Flexible sensors have essential applications and broad market prospects in fields such as wearable electronics, intelligent machines, and structural health monitoring. At the same time, these emerging fields also require more significant performance requirements for flexible sensors. Conductive rubber composite materials have high tensile strength, high electromechanical sensitivity, and high stability, making them ideal for fabricating of high-performance flexible pressure sensors. Therefore, further improving the performance of conductive flexible rubber composite pressure sensors is developmental focus. In this review, the preparation and electromechanical response mechanisms of conductive polymer composites are summarized, and methods for improving the performance of flexible sensors through structural design are introduced, including conductive network structural design, substrate structural design, and conductive polymer composite structural design. In addition, the main applications of flexible pressure sensors are introduced. Finally, problems in developing flexible sensors are summarized, and future development directions are discussed.

摘要

近年来, 柔性应变及应力传感器因其灵敏度高、应变范围大、形式多样等显著优点引起研究人员的广泛关注. 柔性传感器在可 穿戴电子、智能机械、结构健康监测等领域有着重要的应用价值和广阔的市场前景. 同时, 这些新兴领域也对柔性传感器的性能要求 更为苛刻. 导电橡胶复合材料具有高拉伸、高力敏、高稳定性的特点, 是制备高性能柔性压力传感器的理想材料, 进一步提升导电橡 胶复合材料柔性传感器的性能是该领域发展重点之一. 本文综述了导电橡胶类复合材料的制备方法和力电响应机理, 重点介绍了通过 结构设计提高柔性压力传感器性能的方法, 包括内部导电网络结构设计、基体结构设计和导电聚合物复合材料整体结构设计等. 同时, 文章还介绍了柔性传感器的主要应用领域. 最后, 总结了柔性传感器目前发展中存在的问题, 并对未来的发展方向进行了讨论.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D. H. Kim, Stretchable silicon nanoribbon electronics for skin prosthesis, Nat. Commun. 5, 5747 (2014).

    Article  ADS  Google Scholar 

  2. Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, F. Wang, Y. Cao, Z. Wang, H. Li, Y. Chen, and X. Feng, Flexible hybrid electronics for digital healthcare, Adv. Mater. 32, 1902062 (2020).

    Article  Google Scholar 

  3. H. Yang, J. C. Shang, W. F. Wang, Y. F. Yang, Y. N. Yuan, H. S. Lei, and D. N. Fang, Polyurethane sponges-based ultrasensitive pressure sensor via bioinspired microstructure generated by pre-strain strategy, Compos. Sci. Tech. 221, 109308 (2022).

    Article  Google Scholar 

  4. H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao, C. Wang, C. Pan, C. Liu, and C. Shen, Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezo-resistive sensor and oil/water separation applications, Adv. Funct. Mater. 31, 2008006 (2021).

    Article  Google Scholar 

  5. S. Wu, P. Liu, W. Tong, J. Li, G. Xu, F. Teng, J. Liu, H. Feng, R. Hu, A. Yang, C. Liu, K. Xing, X. Yang, H. Tian, A. Song, X. Yang, and Y. Huang, An ultra-sensitive core-sheath fiber strain sensor based on double strain layered structure with cracks and modified MWCNTs/silicone rubber for wearable medical electronics, Compos. Sci. Tech. 231, 109816 (2023).

    Article  Google Scholar 

  6. Y. Zhao, X. Guo, W. Hong, T. Zhu, T. Zhang, Z. Yan, K. Zhu, J. Wang, G. Zheng, S. Mao, K. Wang, Y. Wang, C. Jin, G. Tang, S. Shao, Y. Xia, G. Xing, Q. Hong, Y. Xu, and J. Wu, Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3D printing, Compos. Sci. Tech. 231, 109837 (2023).

    Article  Google Scholar 

  7. F. Zhang, L. Guo, Y. Shi, Z. Jin, Y. Cheng, Z. Zhang, C. Li, Y. Zhang, C. H. Wang, W. Feng, and Q. Zheng, Structural engineering of graphite network for ultra-sensitive and durable strain sensors and strain-controlled switches, Chem. Eng. J. 452, 139664 (2023).

    Article  Google Scholar 

  8. Y. F. Yang, H. Yang, J. C. Shang, W. H. Zhao, X. Yan, Z. S. Wan, H. S. Lei, and H. S. Chen, A high-sensitivity flexible PDMS@rGO-based pressure sensor with ultra-wide working range based on bioinspired gradient hierarchical structure with coplanar electrodes, Compos. Sci. Tech. 240, 110078 (2023).

    Article  Google Scholar 

  9. C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, and Z. Bao, A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics, Sci. Robot. 3, (2018).

  10. Y. L. Park, B. Chen, N. O. Pérez-Arancibia, D. Young, L. Stirling, R. J. Wood, E. C. Goldfield, and R. Nagpal, Design and control ofa bio-inspired soft wearable robotic device for ankle-foot rehabilitation, Bioinspir. Biomim. 9, 016007 (2014).

    Article  ADS  Google Scholar 

  11. J. Kim, D. Park, S. Moon, C. Park, K. Thiyagarajan, S. Choi, H. Hwang, and U. Jeong, Omnidirectional tactile profiling using a deformable pressure sensor array based on localized piezoresistivity, Adv Mater. Technologies 7, 2100688 (2022).

    Article  Google Scholar 

  12. C. Yang, D. Zhang, H. Luan, X. Chen, and W. Yan, In situ polymerized mxene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition, ACS Appl. Mater. Interfaces 15, 5811–5821 (2023).

    Article  Google Scholar 

  13. Z. Zhao, J. Tang, J. Yuan, Y. Li, Y. Dai, J. Yao, Q. Zhang, S. Ding, T. Li, R. Zhang, Y. Zheng, Z. Zhang, S. Qiu, Q. Li, B. Gao, N. Deng, H. Qian, F. Xing, Z. You, and H. Wu, Large-scale integrated flexible tactile sensor array for sensitive smart robotic touch, ACS Nano 16, 16784 (2022).

    Article  Google Scholar 

  14. J. He, G. Wen, and J. Liu, A class ofbionic hyper-redundant robots mimicking the bird’s neck, Acta Mech. Sin. 39, 522351 (2023).

    Article  Google Scholar 

  15. G. Y. Gou, X. S. Li, J. M. Jian, H. Tian, F. Wu, J. Ren, X. S. Geng, J. D. Xu, Y. C. Qiao, Z. Y. Yan, G. Dun, C. W. Ahn, Y. Yang, and T. L. Ren, Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum, Sci. Adv. 8, eabn2156 (2022).

    Article  ADS  Google Scholar 

  16. S. Kim, M. Amjadi, T. I. Lee, Y. Jeong, D. Kwon, M. S. Kim, K. Kim, T. S. Kim, Y. S. Oh, and I. Park, Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices, ACS Appl. Mater. Interfaces 11, 23639 (2019).

    Article  Google Scholar 

  17. X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. M. Lee, S. Y. Kim, P. Gutruf, C. Zhang, Y. Xue, Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Y. Jeong, Y. J. Yu, J. Cornman, C. S. Tan, B. H. Kim, K. H. Lee, X. Feng, Y. Huang, and J. A. Rogers, Skin-integrated wireless haptic interfaces for virtual and augmented reality, Nature 575, 473 (2019).

    Article  ADS  Google Scholar 

  18. L. E. Osborn, A. Dragomir, J. L. Betthauser, C. L. Hunt, H. H. Nguyen, R. R. Kaliki, and N. V. Thakor, Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain, Sci. Robot. 3, eaat3818 (2018).

    Article  Google Scholar 

  19. S. Zhang, S. Wang, Y. Zheng, R. Yang, E. Dong, L. Lu, S. Xuan, and X. Gong, Coaxial 3D-Printed and kirigami-inspired deployable wearable electronics for complex body surfaces, Compos. Sci. Tech. 216, 109041 (2021).

    Article  Google Scholar 

  20. D. Zymelka, K. Togashi, and T. Kobayashi, Carbon-based printed strain sensor array and wireless measuring system for application to structural health monitoring, 2019.

  21. S. Chen, Y. Wei, S. Wei, Y. Lin, and L. Liu, Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles, ACS Appl. Mater. Interfaces 8, 25563 (2016).

    Article  Google Scholar 

  22. H. Yang, X. F. Yao, Z. Zheng, L. H. Gong, L. Yuan, Y. N. Yuan, and Y. H. Liu, Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing, Compos. Sci. Tech. 167, 371 (2018).

    Article  Google Scholar 

  23. R. Balaji, and M. Sasikumar, Graphene based strain and damage prediction system for polymer composites, Compos. Part A-Appl. Sci. Manuf. 103, 48 (2017).

    Article  Google Scholar 

  24. D. Zymelka, K. Togashi, R. Ohigashi, T. Yamashita, S. Takamatsu, T. Itoh, and T. Kobayashi, Printed strain sensor array for application to structural health monitoring, Smart Mater. Struct. 26, 105040 (2017).

    Article  ADS  Google Scholar 

  25. J. Huang, J. Zhou, Y. Luo, G. Yan, Y. Liu, Y. Shen, Y. Xu, H. Li, L. Yan, G. Zhang, Y. Fu, and H. Duan, Wrinkle-enabled highly stretchable strain sensors for wide-range health monitoring with a big data cloud platform, ACS Appl. Mater. Interfaces 12, 43009 (2020).

    Article  Google Scholar 

  26. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotech. 6, 296 (2011).

    Article  ADS  Google Scholar 

  27. Q. Liu, J. Chen, Y. Li, and G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions, ACS Nano 10, 7901 (2016).

    Article  Google Scholar 

  28. X. Zhao, F. Meng, and Y. Peng, Flexible and highly pressure-sensitive ternary composites-wrapped polydimethylsiloxane sponge based on synergy of multi-dimensional components, Compos. Part BEng. 229, 109466 (2022).

    Article  Google Scholar 

  29. Z. Li, D. Feng, B. Li, D. Xie, and Y. Mei, FDM printed MXene/MnFe2O4/MWCNTs reinforced TPU composites with 3D Voronoi structure for sensor and electromagnetic shielding applications, Compos. Sci. Tech. 231, 109803 (2023).

    Article  Google Scholar 

  30. L. Yuan, X. Yao, and H. Yang, Multiscale modelling of strain-resistance behaviour for graphene rubber composites under large deformation, Nanoscale 11, 21554 (2019).

    Article  Google Scholar 

  31. J. H. Lee, S. H. Kim, J. S. Heo, J. Y. Kwak, C. W. Park, I. Kim, M. Lee, H. H. Park, Y. H. Kim, S. J. Lee, and S. K. Park, Heterogeneous structure omnidirectional strain sensor arrays with cognitively learned neural networks, Adv. Mater. 35, e2208184 (2023).

    Article  Google Scholar 

  32. G. Li, D. Chen, C. Li, W. Liu, and H. Liu, Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range, Adv. Sci. 7, 2000154 (2020).

    Article  Google Scholar 

  33. L. Li, X. Bao, J. Meng, C. Zhang, and T. Liu, Sponge-hosting polyaniline array microstructures for piezoresistive sensors with a wide detection range and high sensitivity, ACS Appl. Mater. Interfaces 14, 30228 (2022).

    Article  Google Scholar 

  34. K. H. Kim, S. K. Hong, S.H. Ha, L. Li, H. W. Lee, and J. M. Kim, Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor via superaligned carbon nanotube-based strain engineering, Materials Horizons 7, 2662–2672 (2020).

    Article  Google Scholar 

  35. L. Liu, Z. Jiao, J. Zhang, Y. Wang, C. Zhang, X. Meng, X. Jiang, S. Niu, Z. Han, and L. Ren, Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications, ACS Appl. Mater. Interfaces 13, 1967 (2021).

    Article  Google Scholar 

  36. H. Lu, S. Qu, and X. Feng, Preface: Mechanics of soft materials and flexible structures, Acta Mech. Sin. 37, 746 (2021).

    Article  ADS  Google Scholar 

  37. S. Pan, S. Xie, and Q. Li, Coupling electro-mechanical behaviors in the interdigital electrode device offerroelectrics, Acta Mech. Sin. 37, 649 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Wang, G. Chen, B. Yao, A. J. Y. Chee, Z. Wang, P. Du, S. Qu, and A. C. H. Yu, In situ and intraoperative detection of the ureter injury using a highly sensitive piezoresistive sensor with a tunable porous structure, ACS Appl. Mater. Interfaces 13, 21669 (2021).

    Article  Google Scholar 

  39. X. Yan, S. Chen, G. Zhang, W. Shi, Z. Peng, Z. Liu, Y. Chen, Y. Huang, and L. Liu, Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electro-physiological monitoring, Compos. Sci. Tech. 230, 109751 (2022).

    Article  Google Scholar 

  40. Y. Bu, T. Shen, W. Yang, S. Yang, Y. Zhao, H. Liu, Y. Zheng, C. Liu, and C. Shen, Ultrasensitive strain sensor based on super-hydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin, Sci. Bull. 66, 1849 (2021).

    Article  Google Scholar 

  41. H. Yang, X. F. Yao, Z. Zheng, and Y. H. Liu, Graphene rubber composites integrated sealing rings for monitoring contact pressure and the aging process, Compos. Part A-Appl. Sci. Manuf. 118, 171 (2019).

    Article  Google Scholar 

  42. S. Li, G. Liu, R. Li, Q. Li, Y. Zhao, M. Huang, M. Zhang, S. Yin, Y. Zhou, H. Tang, L. Wang, G. Fang, and Y. Su, Contact-resistance-free stretchable strain sensors with high repeatability and linearity, ACS Nano 16, 541 (2022).

    Article  Google Scholar 

  43. X. Liu, D. Liu, J. Lee, Q. Zheng, X. Du, X. Zhang, H. Xu, Z. Wang, Y. Wu, X. Shen, J. Cui, Y. W. Mai, and J. K. Kim, Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors, ACS Appl. Mater. Interfaces 11, 2282 (2019).

    Article  Google Scholar 

  44. B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan, Q. Ji, and H. Jia, Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame, ACS Appl. Mater. Interfaces 9, 32054 (2017).

    Article  Google Scholar 

  45. L. Zhang, H. Li, X. Lai, T. Gao, and X. Zeng, Three-dimensional binary-conductive-network silver nanowires@thiolated graphene foam-based room-temperature self-healable strain sensor for human motion detection, ACS Appl. Mater. Interfaces 12, 44360 (2020).

    Article  Google Scholar 

  46. S. Zheng, J. Deng, L. Yang, D. Ren, S. Huang, W. Yang, Z. Liu, and M. Yang, Investigation on the piezoresistive behavior of high-density polyethylene/carbon black films in the elastic and plastic regimes, Compos. Sci. Tech. 97, 34 (2014).

    Article  Google Scholar 

  47. W. Zhai, Q. Xia, K. Zhou, X. Yue, M. Ren, G. Zheng, K. Dai, C. Liu, and C. Shen, Multifunctional flexible carbon black/poly-dimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability, Chem. Eng. J. 372, 373 (2019).

    Article  Google Scholar 

  48. R. Yu, T. Xia, B. Wu, J. Yuan, L. Ma, G. J. Cheng, and F. Liu, Highly sensitive flexible piezoresistive sensor with 3D conductive network, ACS Appl. Mater. Interfaces 12, 35291 (2020).

    Article  Google Scholar 

  49. Y. Bian, and Y. Li, Porous conductive elastomeric composites with carbon nanotubes suspended in the narrow pores from Co-continuous polymer blend nanocomposites, Compos. Sci. Tech. 218, 109116 (2022).

    Article  Google Scholar 

  50. Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity, ACS Nano 12, 2346 (2018).

    Article  Google Scholar 

  51. Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang, and Z. L. Wang, Hierarchically patterned self-powered sensors for multifunctional tactile sensing, Sci. Adv. 6, eabb9083 (2020).

    Article  ADS  Google Scholar 

  52. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas ofmassless Dirac fermions in graphene, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  53. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442, 282 (2006).

    Article  ADS  Google Scholar 

  54. K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192 (2012).

    Article  ADS  Google Scholar 

  55. S. Araby, I. Zaman, Q. Meng, N. Kawashima, A. Michelmore, H. C. Kuan, P. Majewski, J. Ma, and L. Zhang, Melt compounding with graphene to develop functional, high-performance elastomers, Nanotechnology 24, 165601 (2013).

    Article  ADS  Google Scholar 

  56. G. Scherillo, M. Lavorgna, G. G. Buonocore, Y. H. Zhan, H. S. Xia, G. Mensitieri, and L. Ambrosio, Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites, ACS Appl. Mater. Interfaces 6, 2230 (2014).

    Article  Google Scholar 

  57. H. Kang, K. Zuo, Z. Wang, L. Zhang, L. Liu, and B. Guo, Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance, Compos. Sci. Tech. 92, 1 (2014).

    Article  Google Scholar 

  58. A. Malas, P. Pal, and C. K. Das, Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends, Mater. Des. 55, 664 (2014).

    Article  Google Scholar 

  59. Y. Mao, S. Wen, Y. Chen, F. Zhang, P. Panine, T. W. Chan, L. Zhang, Y. Liang, and L. Liu, High performance graphene oxide based rubber composites, Sci. Rep. 3, 2508 (2013).

    Article  ADS  Google Scholar 

  60. Y. Tang, S. Gong, Y. Chen, L. W. Yap, and W. Cheng, Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths, ACS Nano 8, 5707 (2014).

    Article  Google Scholar 

  61. H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, and Z. Guo, Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers, Nanoscale 8, 12977 (2016).

    Article  ADS  Google Scholar 

  62. C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Möbius, R. J. Young, and J. N. Coleman, Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites, Science 354, 1257 (2016).

    Article  ADS  Google Scholar 

  63. K. Preetha Nair, P. Thomas, and R. Joseph, Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: Mechanical and electrical properties, Mater. Des. 41, 23 (2012).

    Article  Google Scholar 

  64. J. S. Gao, Z. Liu, Z. Yan, and Y. He, A novel slurry blending method for a uniform dispersion of carbon nanotubes in natural rubber composites, Results Phys. 15, 102720 (2019).

    Article  Google Scholar 

  65. Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong, and L. Liu, A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network, J. Mater. Chem. C 4, 6345 (2016).

    Article  Google Scholar 

  66. Q. Wang, Y. Wang, Q. Meng, T. Wang, W. Guo, G. Wu, and L. You, Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending, RSC Adv. 7, 2796 (2017).

    Article  ADS  Google Scholar 

  67. H. Yang, L. Yuan, X. F. Yao, Z. Zheng, and D. N. Fang, Monotonic strain sensing behavior ofself-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading, Compos. Sci. Tech. 200, 108474 (2020).

    Article  Google Scholar 

  68. H. Yang, L. H. Gong, Z. Zheng, and X. F. Yao, Highly stretchable and sensitive conductive rubber composites with tunable piezo-resistivity for motion detection and flexible electrodes, Carbon 158, 893 (2020).

    Article  Google Scholar 

  69. Z. Tang, B. C. Guo, L. Q. Zhang, and D. M. Jia, Graphene/rubber nanocomposites, Acta. Polym. Sin. 7, 865 (2014).

    Google Scholar 

  70. J. R. Potts, O. Shankar, S. Murali, L. Du, and R. S. Ruoff, Latex and two-roll mill processing of thermally-exfoliated graphite oxide/ natural rubber nanocomposites, Compos. Sci. Tech. 74, 166 (2013).

    Article  Google Scholar 

  71. Y. Zheng, Y. Li, K. Dai, M. Liu, K. Zhou, G. Zheng, C. Liu, and C. Shen, Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors, Compos. Part A-Appl. Sci. Manuf. 101, 41 (2017).

    Article  Google Scholar 

  72. M. Hernandez, M. M. Bernal, R. Verdejo, T. A. Ezquerra, and M. A. López-Manchado, Overall performance of natural rubber/graphene nanocomposites, Compos. Sci. Tech. 73, 40 (2012).

    Article  Google Scholar 

  73. G. Shi, Z. Zhao, J. Pai, I. Lee, L. Zhang, C. Stevenson, K. Ishara, R. Zhang, H. Zhu, and J. Ma, Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites, Adv. Funct. Mater. 26, 7614 (2016).

    Article  Google Scholar 

  74. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457, 706 (2009).

    Article  ADS  Google Scholar 

  75. Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5, 3645 (2011).

    Article  Google Scholar 

  76. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee, and P. S. Lee, Highly stretchable piezoresistive graphene-nanocellu-lose nanopaper for strain sensors, Adv. Mater. 26, 2022 (2014).

    Article  Google Scholar 

  77. B. Ozbas, C. D. O’Neill, R. A. Register, I. A. Aksay, R. K. Prud’homme, and D. H. Adamson, Multifunctional elastomer nanocomposites with functionalized graphene single sheets, J. Polym. Sci. B Polym. Phys. 50, 910 (2012).

    Article  ADS  Google Scholar 

  78. Y. Huang, Y. Qin, N. Wang, Y. Zhou, H. Niu, J. Y. Dong, J. Hu, and Y. Wang, Reduction of graphite oxide with a grignard reagent for facile in situ preparation of electrically conductive polyolefin/ graphene nanocomposites, Macromol. Chem. Phys. 213, 720 (2012).

    Article  Google Scholar 

  79. H. Gu, J. Guo, H. Wei, S. Guo, J. Liu, Y. Huang, M. A. Khan, X. Wang, D. P. Young, S. Wei, and Z. Guo, Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids, Adv. Mater. 27, 6277 (2015).

    Article  Google Scholar 

  80. L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer, ACS Appl. Mater. Interfaces 5, 5815 (2013).

    Article  Google Scholar 

  81. E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, and T. Peijs, Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition ofsecondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour, Compos. Sci. Tech. 74, 85 (2013).

    Article  Google Scholar 

  82. H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, Y. Liang, Y. Tao, X. Wang, and J. Zhao, Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene, Polymer 53, 3378 (2012).

    Article  Google Scholar 

  83. D. Ponnamma, K. K. Sadasivuni, M. Strankowski, Q. Guo, and S. Thomas, Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application, Soft Matter 9, 10343 (2013).

    Article  ADS  Google Scholar 

  84. K. Wu, Y. Xue, W. Yang, S. Chai, F. Chen, and Q. Fu, Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite— multi-wall carbon nanotubes ternary composites, Compos. Sci. Tech. 130, 28 (2016).

    Article  Google Scholar 

  85. X. Wu, Y. Han, X. Zhang, and C. Lu, Hierarchically structured composites for ultrafast liquid sensing and smart leak-plugging, Phys. Chem. Chem. Phys. 19, 16198 (2017).

    Article  ADS  Google Scholar 

  86. M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Flexible and highly sensitive pressure sensors based on bionic hierarchical structures, Adv. Funct. Mater. 27, 1606066 (2017).

    Article  Google Scholar 

  87. Q. Tian, W. Yan, Y. Li, and D. Ho, Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure, ACS Appl. Mater. Interfaces 12, 9710 (2020).

    Article  Google Scholar 

  88. A. F. Carvalho, A. J. S. Fernandes, C. Leitão, J. Deuermeier, A. C. Marques, R. Martins, E. Fortunato, and F. M. Costa, Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide, Adv. Funct. Mater. 28, 1805271 (2018).

    Article  Google Scholar 

  89. D. X. Luong, A. K. Subramanian, G. A. L. Silva, J. Yoon, S. Cofer, K. Yang, P. S. Owuor, T. Wang, Z. Wang, J. Lou, P. M. Ajayan, and J. M. Tour, Laminated object manufacturing of 3D-printed laser-induced graphene foams, Adv. Mater. 30, 1707416 (2018).

    Article  Google Scholar 

  90. L. Wang, D. Wang, Z. Wu, J. Luo, X. Huang, Q. Gao, X. Lai, L. C. Tang, H. Xue, and J. Gao, Self-derived superhydrophobic and multifunctional polymer sponge composite with excellent joule heating and photothermal performance for strain/pressure sensors, ACS Appl. Mater. Interfaces 12, 13316 (2020).

    Article  Google Scholar 

  91. X. Zhang, D. Xiang, W. Zhu, Y. Zheng, E. Harkin-Jones, P. Wang, C. Zhao, H. Li, B. Wang, and Y. Li, Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyur-ethane sponges, Compos. Sci. Tech. 200, 108437 (2020).

    Article  Google Scholar 

  92. L. W. Lo, J. Zhao, H. Wan, Y. Wang, S. Chakrabartty, and C. Wang, A soft sponge sensor for multimodal sensing and distinguishing of pressure, strain, and temperature, ACS Appl. Mater. Interfaces 14, 9570 (2022).

    Article  Google Scholar 

  93. J. Yang, Y. Ye, X. Li, X. Lü, and R. Chen, Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application, Compos. Sci. Tech. 164, 187 (2018).

    Article  Google Scholar 

  94. S. Zheng, X. Wu, Y. Huang, Z. Xu, W. Yang, Z. Liu, S. Huang, B. Xie, and M. Yang, Highly sensitive and multifunctional piezo-resistive sensor based on polyaniline foam for wearable human-activity monitoring, Compos. Part A-Appl. Sci. Manuf. 121, 510 (2019).

    Article  Google Scholar 

  95. B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, and X. Chen, Microstructured graphene arrays for highly sensitive flexible tactile sensors, Small 10, 3625 (2014).

    Article  Google Scholar 

  96. K. Kim, M. Jung, B. Kim, J. Kim, K. Shin, O. S. Kwon, and S. Jeon, Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin, Nano Energy 41, 301 (2017).

    Article  Google Scholar 

  97. S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Highly sensitive flexible pressure sensors with microstruc-tured rubber dielectric layers, Nat. Mater 9, 859 (2010).

    Article  ADS  Google Scholar 

  98. D. H. Lee, J. C. Yang, J. Y. Sim, H. Kang, H. R. Kim, and S. Park, Bending sensor based on controlled microcracking regions for application toward wearable electronics and robotics, ACS Appl. Mater. Interfaces 14, 31312 (2022).

    Article  Google Scholar 

  99. G. J. Zhu, P. G. Ren, J. Wang, Q. Duan, F. Ren, W. M. Xia, and D. X. Yan, A highly sensitive and broad-range pressure sensor based on polyurethane mesodome arrays embedded with silver nanowires, ACS Appl. Mater. Interfaces 12, 19988 (2020).

    Article  Google Scholar 

  100. J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins, ACS Nano 8, 4688 (2014).

    Article  Google Scholar 

  101. B. Ji, Q. Zhou, J. Wu, Y. Gao, W. Wen, and B. Zhou, Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array, ACS Appl. Mater. Interfaces 12, 31021 (2020).

    Article  Google Scholar 

  102. S. Zheng, Y. Jiang, X. Wu, Z. Xu, Z. Liu, W. Yang, and M. Yang, Highly sensitive pressure sensor with broad linearity via constructing a hollow structure in polyaniline/polydimethylsiloxane composite, Compos. Sci. Tech. 201, 108546 (2021).

    Article  Google Scholar 

  103. Y. He, L. Zhao, J. Zhang, L. Liu, H. Liu, and L. Liu, A breathable, sensitive and wearable piezoresistive sensor based on hierarchical micro-porous PU@CNT films for long-term health monitoring, Compos. Sci. Tech. 200, 108419 (2020).

    Article  Google Scholar 

  104. W. Li, X. Jin, X. Han, Y. Li, W. Wang, T. Lin, and Z. Zhu, Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors, ACS Appl. Mater. Interfaces 13, 19211 (2021).

    Article  Google Scholar 

  105. X. Guan, Z. Wang, W. Zhao, H. Huang, S. Wang, Q. Zhang, D. Zhong, W. Lin, N. Ding, and Z. Peng, Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture, ACS Appl. Mater. Interfaces 12, 26137 (2020).

    Article  Google Scholar 

  106. H. Chen, G. Sun, Z. Yang, T. Wang, G. Bai, J. Wang, R. Chen, and S. Han, Ultra-sensitive, lightweight, and flexible composite sponges for stress sensors based combining of “through-hole” polyimide sponge and “pleated stacked” reduced graphene oxide, Compos. Sci. Tech. 218, 109179 (2022).

    Article  Google Scholar 

  107. J. Hwang, Y. Kim, H. Yang, and J. H. Oh, Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor, Compos. Part B-Eng. 211, 108607 (2021).

    Article  Google Scholar 

  108. Y. Wu, H. Liu, S. Chen, X. Dong, P. Wang, S. Liu, Y. Lin, Y. Wei, and L. Liu, Channel crack-designed gold@PU sponge for highly elastic piezoresistive sensor with excellent detectability, ACS Appl. Mater. Interfaces 9, 20098 (2017).

    Article  Google Scholar 

  109. Y. Zhou, P. Zhan, M. Ren, G. Zheng, K. Dai, L. Mi, C. Liu, and C. Shen, Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring, ACS Appl. Mater. Interfaces 11, 7405 (2019).

    Article  Google Scholar 

  110. C. Pang, G. Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, and K. Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nat. Mater. 11, 795 (2012).

    Article  ADS  Google Scholar 

  111. Y. Guo, Z. Guo, M. Zhong, P. Wan, W. Zhang, and L. Zhang, A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing, Small 14, 1803018 (2018).

    Article  Google Scholar 

  112. S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys. 45, 574 (1973).

    Article  ADS  Google Scholar 

  113. A. K. Appel, R. Thomann, and R. Mülhaupt, Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols, Polymer 53, 4931 (2012).

    Article  Google Scholar 

  114. D. Stauffer, and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 2014).

    MATH  Google Scholar 

  115. H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Prog. Polym. Sci. 39, 627 (2014).

    Article  Google Scholar 

  116. P. M. Kogut, and J. P. Straley, Distribution-induced non-universality of the percolation conductivity exponents, J. Phys. C-Solid State Phys. 12, 2151 (1979).

    Article  ADS  Google Scholar 

  117. I. Balberg, Tunneling and nonuniversal conductivity in composite materials, Phys. Rev. Lett. 59, 1305 (1987).

    Article  ADS  Google Scholar 

  118. I. Balberg, Limits on the continuum-percolation transport exponents, Phys. Rev. B 57, 13351 (1998).

    Article  ADS  Google Scholar 

  119. W. Bauhofer, and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Tech. 69, 1486 (2009).

    Article  Google Scholar 

  120. H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, and Z. Guo, Lightweight conductive graphene/ thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing, J. Mater. Chem. C 5, 73 (2017).

    Article  Google Scholar 

  121. V. Eswaraiah, K. Balasubramaniam, and S. Ramaprabhu, Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring, J. Mater. Chem. 21, 12626 (2011).

    Article  Google Scholar 

  122. H. J. Kim, K. Sim, A. Thukral, and C. Yu, Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors, Sci. Adv. 3, e1701114 (2017).

    Article  ADS  Google Scholar 

  123. J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring, ACS Appl. Mater. Interfaces 7, 6317 (2015).

    Article  Google Scholar 

  124. Y. Yan, M. Potts, Z. Jiang, and V. Sencadas, Synthesis of highly-stretchable graphene—poly(glycerol sebacate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications, Compos. Sci. Tech. 162, 14 (2018).

    Article  Google Scholar 

  125. C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites, ACS Nano 8, 8819 (2014).

    Article  Google Scholar 

  126. H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, and Z. Guo, Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications, J. Mater. Chem. C 4, 157 (2016).

    Article  Google Scholar 

  127. Y. Lin, X. Dong, S. Liu, S. Chen, Y. Wei, and L. Liu, Graphene-elastomer composites with segregated nanostructured network for liquid and strain sensing application, ACS Appl. Mater. Interfaces 8, 24143 (2016).

    Article  Google Scholar 

  128. F. R. Al-solamy, A. A. Al-Ghamdi, and W. E. Mahmoud, Piezo-resistive behavior of graphite nanoplatelets based rubber nanocomposites, Polym. Adv. Technol. 23, 478 (2012).

    Article  Google Scholar 

  129. Q. Guo, Y. Luo, J. Liu, X. Zhang, and C. Lu, A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface, J. Mater. Chem. C 6, 2139 (2018).

    Article  Google Scholar 

  130. B. Dong, S. Wu, L. Zhang, and Y. Wu, High performance natural rubber composites with well-organized interconnected graphene networks for strain-sensing application, Ind. Eng. Chem. Res. 55, 4919 (2016).

    Article  Google Scholar 

  131. J. G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys. 34, 1793 (1963).

    Article  ADS  Google Scholar 

  132. X. W. Zhang, Y. Pan, Q. Zheng, and X. S. Yi, Time dependence of piezoresistance for the conductor-filled polymer composites, J. Polym. Sci. B Polym. Phys. 38, 2739 (2000).

    Article  ADS  Google Scholar 

  133. P. Sheng, E. K. Sichel, and J. I. Gittleman, Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites, Phys. Rev. Lett. 40, 1197 (1978).

    Article  ADS  Google Scholar 

  134. Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, and C. Shen, The effect offiller dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors, Compos. Sci. Tech. 139, 64 (2017).

    Article  Google Scholar 

  135. G. Kraus, Mechanical losses in carbon-black-filled rubbers, J. Appl. Polym. Sci. Symp. 75, 1984.

  136. G. Heinrich, and M. Klüppel, Recent advances in the theory of filler networking in elastomers, in: Filled Elastomers Drug Delivery Systems. Advances in Polymer Science (Springer, Berlin, Heidelberg, 2002), pp. 1–44.

    Google Scholar 

  137. R. Zhang, H. Deng, R. Valenca, J. Jin, Q. Fu, E. Bilotti, and T. Peijs, Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading, Compos. Sci. Tech. 74, 1 (2013).

    Article  Google Scholar 

  138. J. J. Ku-Herrera, and F. Avilés, Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes, Carbon 50, 2592 (2012).

    Article  Google Scholar 

  139. Y. Zheng, Y. Li, K. Dai, Y. Wang, G. Zheng, C. Liu, and C. Shen, A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring, Compos. Sci. Tech. 156, 276 (2018).

    Article  Google Scholar 

  140. H. Deng, M. Ji, D. Yan, S. Fu, L. Duan, M. Zhang, and Q. Fu, Towards tunable resistivity-strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites, J. Mater. Chem. A 2, 10048 (2014).

    Article  Google Scholar 

  141. A. B. Oskouyi, and P. Mertiny, Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nanodisks, Procedia Eng. 10, 403 (2011).

    Article  Google Scholar 

  142. G. Ambrosetti, N. Johner, C. Grimaldi, A. Danani, and P. Ryser, Percolative properties of hard oblate ellipsoids of revolution with a soft shell, Phys. Rev. E 78, 061126 (2008).

    Article  ADS  Google Scholar 

  143. M. Mathew, T. Schilling, and M. Oettel, Connectivity percolation in suspensions of hard platelets, Phys. Rev. E 85, 061407 (2012).

    Article  ADS  Google Scholar 

  144. Y. Gao, D. Cao, J. Liu, J. Shen, Y. Wu, and L. Zhang, Molecular dynamics simulation of the conductivity mechanism ofnanorod filled polymer nanocomposites, Phys. Chem. Chem. Phys. 17, 22959 (2015).

    Article  Google Scholar 

  145. A. Manta, M. Gresil, and C. Soutis, Predictive model of graphene based polymer nanocomposites: Electrical performance, Appl. Compos. Mater. 24, 281 (2017).

    Article  ADS  Google Scholar 

  146. A. Manta, M. Gresil, and C. Soutis, Simulated electrical response of randomly distributed and aligned graphene/polymer nanocomposites, Compos. Struct. 192, 452 (2018).

    Article  Google Scholar 

  147. X. Lu, J. Yvonnet, F. Detrez, and J. Bai, Multiscale modeling of nonlinear electric conductivity in graphene-reinforced nanocomposites taking into account tunnelling effect, J. Comput. Phys. 337, 116 (2017).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  148. X. Lu, D. G. Giovanis, J. Yvonnet, V. Papadopoulos, F. Detrez, and J. Bai, A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput. Mech. 64, 307 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  149. T. C. Theodosiou, and D. A. Saravanos, Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models, Compos. Sci. Tech. 70, 1312 (2010).

    Article  Google Scholar 

  150. B. De Vivo, P. Lamberti, G. Spinelli, V. Tucci, L. Vertuccio, and V. Vittoria, Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications, J. Appl. Phys. 116, 054307 (2014).

    Article  ADS  Google Scholar 

  151. R. Rahman, and P. Servati, Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films, Nanotechnology 23, 055703 (2012).

    Article  ADS  Google Scholar 

  152. H. Liu, Y.-Z. Liu, K. Dai, Z.-H. Guo, and C.-T. Liu, Progress in studies of flexible stress sensitive conductive polymer composites, Mech. Eng. 5, 481 (2018).

    Google Scholar 

  153. N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor, Carbon 48, 680 (2010).

    Article  Google Scholar 

  154. N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Mater. 56, 2929 (2008).

    Article  ADS  Google Scholar 

  155. B. Hu, N. Hu, Y. Li, K. Akagi, W. Yuan, T. Watanabe, and Y. Cai, Multi-scale numerical simulations on piezoresistivity of CNT/ polymer nanocomposites, Nanoscale Res. Lett. 7, 402 (2012).

    Article  ADS  Google Scholar 

  156. C. Li, and T. W. Chou, Modeling of damage sensing in fiber composites using carbon nanotube networks, Compos. Sci. Tech. 68, 3373 (2008).

    Article  Google Scholar 

  157. C. Li, E. T. Thostenson, and T. W. Chou, Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites, Compos. Sci. Tech. 68, 1445 (2008).

    Article  Google Scholar 

  158. J. Wang, W. Wang, C. Zhang, and W. Yu, The electro-mechanical behavior of conductive filler reinforced polymer composite undergone large deformation: A combined numerical-analytical study, Compos. Part B-Eng. 133, 185 (2018).

    Article  Google Scholar 

  159. M. A. S. Matos, V. L. Tagarielli, P. M. Baiz-Villafranca, and S. T. Pinho, Predictions of the electro-mechanical response of conductive CNT-polymer composites, J. Mech. Phys. Solids 114, 84 (2018).

    Article  ADS  Google Scholar 

  160. K. Grabowski, P. Zbyrad, T. Uhl, W. J. Staszewski, and P. Packo, Multiscale electro-mechanical modeling of carbon nanotube composites, Comput. Mater. Sci. 135, 169 (2017).

    Article  Google Scholar 

  161. H. Yang, L. Yuan, X. F. Yao, and D. N. Fang, Piezoresistive response of graphene rubber composites considering the tunneling effect, J. Mech. Phys. Solids 139, 103943 (2020).

    Article  Google Scholar 

  162. L. Gan, M. Dong, Y. Han, Y. Xiao, L. Yang, and J. Huang, Connection-improved conductive network of carbon nanotubes in a rubber cross-link network, ACS Appl. Mater. Interfaces 10, 18213 (2018).

    Article  Google Scholar 

  163. Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang, Z. Dai, K. Ji, H. Jiang, X. Chen, and Y. Long, Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics, Adv. Funct. Mater. 29, 1806220 (2019).

    Article  Google Scholar 

  164. J. Y. Oh, G. H. Jun, S. Jin, H. J. Ryu, and S. H. Hong, Enhanced electrical networks of stretchable conductors with small fraction of carbon nanotube/graphene hybrid fillers, ACS Appl. Mater. Interfaces 8, 3319 (2016).

    Article  Google Scholar 

  165. H. Zhao, and J. Bai, Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction, ACS Appl. Mater. Interfaces 7, 9652 (2015).

    Article  Google Scholar 

  166. Y. Lin, S. Liu, J. Peng, and L. Liu, Constructing a segregated graphene network in rubber composites towards improved electrically conductive and barrier properties, Compos. Sci. Tech. 131, 40 (2016).

    Article  Google Scholar 

  167. N. George, J. C. C.s., A. Mathiazhagan, and R. Joseph, High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes, Compos. Sci. Tech. 116, 33 (2015).

    Article  Google Scholar 

  168. S. P. Patole, S. K. Reddy, A. Schiffer, K. Askar, B. G. Prusty, and S. Kumar, Piezoresistive and mechanical characteristics of graphene foam nanocomposites, ACS Appl. Nano Mater. 2, 1402 (2019).

    Article  Google Scholar 

  169. S. Wang, X. Zhang, X. Wu, and C. Lu, Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly, Soft Matter 12, 845 (2016).

    Article  ADS  Google Scholar 

  170. M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang, and C. Li, Highly stretchable conductors integrated with a conductive carbon nanotube/ graphene network and 3D porous poly(dimethylsiloxane), Adv. Funct. Mater. 24, 7548 (2014).

    Article  Google Scholar 

  171. X. Qi, P. Matteini, B. Hwang, and S. Lim, Roll stamped Ni/MWCNT composites for highly reliable cellulose paper-based strain sensor, Cellulose 30, 1543 (2022).

    Article  Google Scholar 

  172. Y. Li, C. Jiang, and W. Han, Extending the pressure sensing range of porous polypyrrole with multiscale microstructures, Nanoscale 12, 2081 (2020).

    Article  Google Scholar 

  173. Y. A. Samad, Y. Li, A. Schiffer, S. M. Alhassan, and K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications, Small 11, 2380 (2015).

    Article  Google Scholar 

  174. J. Shen, Y. Guo, S. Zuo, F. Shi, J. Jiang, and J. Chu, A bioinspired porous-designed hydrogel@polyurethane sponge piezoresistive sensor for human-machine interfacing, Nanoscale 13, 19155 (2021).

    Article  Google Scholar 

  175. A. Chhetry, S. Sharma, H. Yoon, S. Ko, and J. Y. Park, Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4 O12 wrapped hybrid sponge for wearable applications, Adv. Funct. Mater. 30, 1910020 (2020).

    Article  Google Scholar 

  176. J. Kuang, Z. Dai, L. Liu, Z. Yang, M. Jin, and Z. Zhang, Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors, Nanoscale 7, 9252 (2015).

    Article  ADS  Google Scholar 

  177. Y. Zhai, Y. Yu, K. Zhou, Z. Yun, W. Huang, H. Liu, Q. Xia, K. Dai, G. Zheng, C. Liu, and C. Shen, Flexible and wearable carbon black/ thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors, Chem. Eng. J. 382, 122985 (2020).

    Article  Google Scholar 

  178. G. Zhang, P. Li, X. Wang, Y. Xia, and J. Yang, Flexible battery-free wireless sensor array based on functional gradient-structured wood for pressure and temperature monitoring, Adv Funct Mater. 33, 2208900 (2022).

    Article  Google Scholar 

  179. Q. Xu, X. Chang, Z. Zhu, L. Xu, X. Chen, L. Luo, X. Liu, and J. Qin, Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/ reduced graphene oxide composite aerogel, RSC Adv. 11, 11760 (2021).

    Article  ADS  Google Scholar 

  180. J. Sha, Y. Li, R. Villegas Salvatierra, T. Wang, P. Dong, Y. Ji, S. K. Lee, C. Zhang, J. Zhang, R. H. Smith, P. M. Ajayan, J. Lou, N. Zhao, and J. M. Tour, Three-dimensional printed graphene foams, ACS Nano 11, 6860 (2017).

    Article  Google Scholar 

  181. K. Cao, M. Wu, J. Bai, Z. Wen, J. Zhang, T. Wang, M. Peng, T. Liu, Z. Jia, Z. Liang, and L. Jiang, Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range, Adv Funct Mater. 32, 2202360 (2022).

    Article  Google Scholar 

  182. Y. A. Samad, Y. Li, S. M. Alhassan, and K. Liao, Novel graphene foam composite with adjustable sensitivity for sensor applications, ACS Appl. Mater. Interfaces 7, 9195 (2015).

    Article  Google Scholar 

  183. X. Wu, Y. Han, X. Zhang, Z. Zhou, and C. Lu, Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing, Adv. Funct. Mater. 26, 6246 (2016).

    Article  Google Scholar 

  184. M. Weng, L. Sun, S. Qu, and L. Chen, Fingerprint-inspired graphene pressure sensor with wrinkled structure, Extreme Mech. Lett. 37, 100714 (2020).

    Article  Google Scholar 

  185. C. Yang, L. Li, J. Zhao, J. Wang, J. Xie, Y. Cao, M. Xue, and C. Lu, Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of polypyrrole films, ACS Appl. Mater. Interfaces 10, 25811 (2018).

    Article  Google Scholar 

  186. D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K. Y. Suh, T. I. Kim, and M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system, Nature 516, 222 (2014).

    Article  ADS  Google Scholar 

  187. J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/ dynamic pressure and temperature stimuli, Sci. Adv. 1, e1500661 (2015).

    Article  ADS  Google Scholar 

  188. Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian, X. Li, L. Wang, D. Wang, and B. Lu, Flexible capacitive pressure sensor enhanced by tilted micropillar arrays, ACS Appl. Mater. Interfaces 11, 17796 (2019).

    Article  Google Scholar 

  189. H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and au-coated polydimethylsiloxane micropillars, ACS Nano 9, 9974 (2015).

    Article  Google Scholar 

  190. J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li, and Y. Fang, Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range, Small 14, 1800819 (2018).

    Article  Google Scholar 

  191. T. Zhao, T. Li, L. Chen, L. Yuan, X. Li, and J. Zhang, Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials, ACS Appl. Mater. Interfaces 11, 29466 (2019).

    Article  Google Scholar 

  192. X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals, Adv. Mater. 26, 1336 (2014).

    Article  ADS  Google Scholar 

  193. S. Wu, J. Zhang, R. B. Ladani, A. R. Ravindran, A. P. Mouritz, A. J. Kinloch, and C. H. Wang, Novel electrically conductive porous pdms/carbon nanofiber composites for deformable strain sensors and conductors, ACS Appl. Mater. Interfaces 9, 14207 (2017).

    Article  Google Scholar 

  194. Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim, S. Kim, T. Kim, H. Im, D. Kim, and Y. Hong, Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor, Nanoscale 7, 6208 (2015).

    Article  ADS  Google Scholar 

  195. H. B. Yao, J. Ge, C. F. Wang, X. Wang, W. Hu, Z. J. Zheng, Y. Ni, and S. H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design, Adv. Mater. 25, 6692 (2013).

    Article  Google Scholar 

  196. G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, and K. Cho, Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array, Adv. Mater. 28, 5300 (2016).

    Article  Google Scholar 

  197. X. Tang, W. Yang, S. Yin, G. Tai, M. Su, J. Yang, H. Shi, D. Wei, and J. Yang, Controllable graphene wrinkle for a high-performance flexible pressure sensor, ACS Appl. Mater. Interfaces 13, 20448 (2021).

    Article  Google Scholar 

  198. Z. Zhang, M. T. Innocent, N. Tang, R. Li, Z. Hu, M. Zhai, L. Yang, W. Ma, H. Xiang, and M. Zhu, Electromechanical performance of strain sensors based on viscoelastic conductive composite polymer fibers, ACS Appl. Mater. Interfaces 14, 44832 (2022).

    Article  Google Scholar 

  199. Y. Wang, Z. Chen, D. Mei, L. Zhu, S. Wang, and X. Fu, Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection, Compos. Sci. Tech. 217, 109078 (2022).

    Article  Google Scholar 

  200. D. Xu, Z. Ouyang, Y. Dong, H. Y. Yu, S. Zheng, S. Li, and K. C. Tam, Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management, Adv. Fiber Mater. 5, 282 (2022).

    Article  Google Scholar 

  201. T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, G. Ding, and X. Xie, Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors, ACS Appl. Mater. Interfaces 10, 30732 (2018).

    Article  Google Scholar 

  202. P. Wei, H. Leng, Q. Chen, R. C. Advincula, and E. B. Pentzer, Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing, ACS Appl. Polym. Mater. 1, 885 (2019).

    Article  Google Scholar 

  203. S. Duan, K. Yang, Z. Wang, M. Chen, L. Zhang, H. Zhang, and C. Li, Fabrication of highly stretchable conductors based on 3d printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network, ACS Appl. Mater. Interfaces 8, 2187 (2016).

    Article  Google Scholar 

  204. T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, and G. Ding, Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors, Adv. Funct. Mater. 29, 1903732 (2019).

    Article  Google Scholar 

  205. S. W. Dai, Y. L. Gu, L. Zhao, W. Zhang, C. H. Gao, Y. X. Wu, S. C. Shen, C. Zhang, T. T. Kong, Y. T. Li, L. X. Gong, G. D. Zhang, and L. C. Tang, Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor, Compos. Part B-Eng. 225, 109243 (2021).

    Article  Google Scholar 

  206. W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan, J. Gao, G. Zheng, C. Liu, and C. Shen, Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability, ACS Appl. Mater. Interfaces 9, 42266 (2017).

    Article  Google Scholar 

  207. Z. Tang, S. Jia, C. Zhou, and B. Li, 3D printing ofhighly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect, ACS Appl. Mater. Interfaces 12, 28669 (2020).

    Article  Google Scholar 

  208. H. Yang, X. F. Yao, L. Yuan, L. H. Gong, and Y. H. Liu, Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading, Nanoscale 11, 578 (2019).

    Article  Google Scholar 

  209. M. Emon, and J. W. Choi, Flexible piezoresistive sensors embedded in 3D printed tires, Sensors 17, 656 (2017).

    Article  ADS  Google Scholar 

  210. O. A. Araromi, M. A. Graule, K. L. Dorsey, S. Castellanos, J. R. Foster, W. H. Hsu, A. E. Passy, J. J. Vlassak, J. C. Weaver, C. J. Walsh, and R. J. Wood, Ultra-sensitive and resilient compliant strain gauges for soft machines, Nature 587, 219 (2020).

    Article  ADS  Google Scholar 

  211. M. Nie, Y. Xia, and H. Yang, A flexible and highly sensitive graphene-based strain sensor for structural health monitoring, Cluster Comput. 22, 8217 (2018).

    Article  Google Scholar 

  212. W. Liu, L. Gong, and H. Yang, Integrated conductive rubber composites for contact deformation detection of tubular seals, Polym. Testing 96, 107089 (2021).

    Article  Google Scholar 

  213. F. Yin, D. Ye, C. Zhu, L. Qiu, and Y. Huang, Stretchable, highly durable ternary nanocomposite strain sensor for structural health monitoring of flexible aircraft, Sensors (Basel) 17, 2677 (2017).

    Article  ADS  Google Scholar 

  214. Y. Zhang, J. Yi, and T. Liu, Embedded flexible force sensor for in-situ tire-road interaction measurements, IEEE Sens. J. 13, 1756 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102044 and 11872228), and the Young Elite Scientists Sponsorship Program by CAST (Grant No. YESS20220131).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jiachen Shang: Investigation, Formal analysis, Writing–original draft and Writing–review & editing. Heng Yang: Investigation, Writing–review & editing, Conceptualization, Methodology and Supervision, Funding acquisition, Project administration. Xuefeng Yao: Conceptualization, Project administration, Resources and Supervision. Haosen Chen: Conceptualization, Project administration, Resources and Supervision.

Corresponding author

Correspondence to Heng Yang  (杨恒).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Yang, H., Yao, X. et al. Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review. Acta Mech. Sin. 40, 423211 (2024). https://doi.org/10.1007/s10409-023-23211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23211-x

Navigation