Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modeling of the near-field radiation of acoustically actuated magnetoelectric antennas

声激励磁电天线的近场辐射模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents an analytical model for the near-field radiation of acoustically actuated magnetoelectric (ME) antennas considering a fully magneto-elastic coupled magnetostrictive constitutive relation. The nonlinearity of the magnetostrictive phase is introduced into the governing equation of the ME antennas using the equivalent parameter method, resulting in analytical expressions of the near-field radiation. The strain distribution in the ME antenna is calculated first and then extracted as a source for solving the magnetic flux density, energies, average radiated power, and radiation impedance. The predictions for the admittance and impedance show good agreement with simulation and experimental data, respectively. The effects of the external stimuli on the radiation performance are investigated, to theoretically evaluate the ME antennas operated in complex magnetic and stress conditions. The required magnetic bias corresponding to the maximum radiation of the ME antennas is determined, which is changed with the pre-stress. In addition, the radiation power can be improved by tensile stress before the required magnetic bias or by compressive stress after the required magnetic bias. The present model may provide a basis for the evaluation and regulation of acoustically actuated ME antenna.

摘要

本文在考虑全磁-弹耦合的磁致伸缩本构关系的基础上, 提出了声激励磁电天线的近场辐射解析模型. 采用等效参数法将磁致伸缩相的非线性引入到磁电天线的控制方程, 推导出了天线近场辐射的解析表达式. 首先计算了磁电天线中的应力分布, 然后将应力场作为源来求解磁感应强度、辐射能、平均辐射功率和辐射阻抗等. 对于导纳和阻抗理论预测值与数值仿真和实验结果完全吻合. 研究了外界激励对电磁天线辐射性能的影响, 从理论上评估了磁电天线在复杂磁场和应力条件下的工作性能; 确定了磁电天线实现最大辐射所需的最优偏磁场值, 并发现该磁场值随预应力的变化规律. 研究表明, 当外加磁场小(大)于最优偏磁场时, 采用拉(压)应力可以提高辐射功率. 本文模型有望为声激励磁电天线的性能评估和调节提供一定的理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang, M. Li, X. Wang, A. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M. E. McConney, B. M. Howe, Z. Hu, J. G. Jones, G. J. Brown, and N. X. Sun, Acoustically actuated ultra-compact NEMS magnetoelectric antennas, Nat. Commun. 8, 296 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. M. Zaeimbashi, M. Nasrollahpour, A. Khalifa, A. Romano, X. Liang, H. Chen, N. Sun, A. Matyushov, H. Lin, C. Dong, Z. Xu, A. Mittal, I. Martos-Repath, G. Jha, N. Mirchandani, D. Das, M. Onabajo, A. Shrivastava, S. Cash, and N. X. Sun, Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing, Nat. Commun. 12, 3141 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Peng, N. Li, F. Li, L. Zhang, and K. Dong, Development simulation of an inflatable membrane antenna based on extended position-based dynamics, Acta Mech. Sin. 38, 521304 (2022).

    Article  MathSciNet  Google Scholar 

  4. D. Mukherjee, and D. Mallick, A self-biased, low-frequency, miniaturized magnetoelectric antenna for implantable medical device applications, Appl. Phys. Lett. 122, 014102 (2023).

    Article  ADS  CAS  Google Scholar 

  5. M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, and S. Dmitry, Recent advances and future directions on underwater wireless communications, Arch Computat. Methods Eng. 27, 1379 (2020).

    Article  Google Scholar 

  6. X. Yun, W. Lin, R. Hu, Y. Liu, X. Wang, G. Yu, Z. Zeng, X. Zhang, and B. Zhang, Bandwidth-enhanced magnetoelectric antenna based on composite bulk acoustic resonators, Appl. Phys. Lett. 121, 033501 (2022).

    Article  ADS  CAS  Google Scholar 

  7. C. Dong, X. Wang, H. Lin, Y. Gao, N. X. Sun, Y. He, M. Li, C. Tu, Z. Chu, X. Liang, H. Chen, Y. Wei, and M. Zaeimbashi, A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas, Antennas Wirel. Propag. Lett. 19, 398 (2020).

    Article  ADS  Google Scholar 

  8. J. D. Schneider, J. P. Domann, M. K. Panduranga, S. Tiwari, P. Shirazi, Z. J. Yao, C. Sennott, D. Shahan, S. Selvin, G. McKnight, W. Wall, R. N. Candler, Y. E. Wang, and G. P. Carman, Experimental demonstration and operating principles of a multiferroic antenna, J. Appl. Phys. 126, 224104 (2019).

    Article  ADS  Google Scholar 

  9. R. V. Petrov, A. S. Tatarenko, S. Pandey, G. Srinivasan, J. V. Mantese, and R. Azadegan, Miniature antenna based on magnetoelectric composites, Electron. Lett. 44, 506 (2008).

    Article  ADS  CAS  Google Scholar 

  10. J. S. McLean, A re-examination of the fundamental limits on the radiation Q of electrically small antennas, IEEE Trans. Antennas Propagat. 44, 672 (1996).

    Article  ADS  Google Scholar 

  11. J. C. E. Sten, A. Hujanen, and P. K. Koivisto, Quality factor of an electrically small antenna radiating close to a conducting plane, IEEE Trans. Antennas Propagat. 49, 829 (2001).

    Article  ADS  Google Scholar 

  12. G. Liu, and S. Dong, Uniformity of direct and converse magneto-electric effects in magnetostrictive-piezoelectric composites, Appl. Phys. Lett. 105, 122903 (2014).

    Article  ADS  Google Scholar 

  13. S. H. Zhang, J. P. Zhou, Z. Shi, P. Liu, and C. Y. Deng, Enhancing magnetic field sensitivity and giant converse magnetoelectric effect in laminate composite of Terfenol-D and multilayer piezoelectric vibrator, J. Alloys Compd. 590, 46 (2014).

    Article  CAS  Google Scholar 

  14. Z. Yao, Y. E. Wang, S. Keller, and G. P. Carman, Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound, IEEE Trans. Antennas Propagat. 63, 3335 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. Z. Yao, S. Tiwari, T. Lu, J. Rivera, K. Q. T. Luong, R. N. Candler, G. P. Carman, and Y. E. Wang, Modeling of multiple dynamics in the radiation of bulk acoustic wave antennas, IEEE J. Multiscale Multiphys. Comput. Tech. 5, 5 (2020).

    Article  ADS  Google Scholar 

  16. J. Li, H. Dong, X. Pan, C. Peng, X. Gan, Y. Gao, W. Ren, and X. He, Influence of permeability dispersion on radiation of BAW antenna: Modeling of multiphysics dynamic coupling, IEEE Trans. Antennas Propagat. 70, 10318 (2022).

    Article  ADS  Google Scholar 

  17. Y. Du, Y. Xu, J. Wu, J. Qiao, Z. Wang, Z. Hu, Z. Jiang, and M. Liu, Very-low-frequency magnetoelectric antennas for portable underwater communication: Theory and experiment, IEEE Trans. Antennas Propagat. 71, 2167 (2023).

    Article  ADS  Google Scholar 

  18. J. Li, C. Peng, S. Chen, Y. Gao, W. Ren, and X. He, Modeling and suppression of eddy current loss for BAW magnetoelectric devices, IEEE Trans. Magn. 57, 1 (2021).

    Google Scholar 

  19. G. Xu, S. Xiao, Y. Li, and B. Z. Wang, Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite, Phys. Lett. A 385, 126959 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  20. F. R. Rostami, A. Khaleghi, and I. Balasingham, Computer simulation of magnetoelectric antenna and performance comparison with microloop, IEEE Access 10, 64473 (2022).

    Article  Google Scholar 

  21. J. Du, X. Jin, and J. Wang, Love wave propagation in layered magneto-electro-elastic structures with initial stress, Acta Mech. 192, 169 (2007).

    Article  Google Scholar 

  22. J. Zhang, C. Fang, and G. J. Weng, Direct and converse nonlinear magnetoelectric coupling in multiferroic composites with ferromagnetic and ferroelectric phases, Proc. R. Soc. A 475, 20190002 (2019).

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  23. H. M. Zhou, X. W. Ou, Y. Xiao, S. X. Qu, and H. P. Wu, An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings, Smart Mater. Struct. 22, 035018 (2013).

    Article  ADS  CAS  Google Scholar 

  24. W. Wang, M. Li, F. Jin, T. He, and Y. Ma, Nonlinear magnetic-mechanical-thermo-electric coupling characteristic analysis on the coupled extensional and flexural vibration of flexoelectric energy nanoharvester with surface effect, Compos. Struct. 308, 116687 (2023).

    Article  Google Scholar 

  25. Y. Shi, B. Lei, Y. Wang, and J. Ye, An analytical model for the self-bias magnetoelectric effect of magnetization-graded magnetoelectric composites, Compos. Struct. 300, 116164 (2022).

    Article  CAS  Google Scholar 

  26. Y. W. Gao, and J. J. Zhang, Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder, Acta Mech. Sin. 28, 385 (2012).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. T. A. Do, H. Talleb, A. Gensbittel, and Z. Ren, 3-D finite element analysis of magnetoelectric composites accounting for material nonlinearity and eddy currents, IEEE Trans. Magn. 55, 1 (2019).

    Google Scholar 

  28. Y. Shi, N. Li, Y. Wang, and J. Ye, An analytical model for nonlinear magnetoelectric effect in laminated composites, Compos. Struct. 263, 113652 (2021).

    Article  Google Scholar 

  29. J. Zhang, X. Wang, X. Chen, H. Du, and G. J. Weng, Finite element analysis of the magnetoelectric effect on hybrid magnetoelectric composites, Compos. Struct. 296, 115876 (2022).

    Article  CAS  Google Scholar 

  30. S. Sudersan, S. Maniprakash, and A. Arockiarajan, Nonlinear magnetoelectric effect in unsymmetric laminated composites, Smart Mater. Struct. 27, 125005 (2018).

    Article  ADS  CAS  Google Scholar 

  31. S. Sudersan, and A. Arockiarajan, Thermal and prestress effects on nonlinear magnetoelectric effect in unsymmetric composites, Compos. Struct. 223, 110924 (2019).

    Article  Google Scholar 

  32. X. J. Zheng, and X. E. Liu, A nonlinear constitutive model for Terfenol-D rods, J. Appl. Phys. 97, 053901 (2005).

    Article  ADS  Google Scholar 

  33. X. J. Zheng, and L. Sun, A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials, J. Appl. Phys. 100, 063906 (2006).

    Article  ADS  Google Scholar 

  34. Y. Pei, and D. Fang, Experimental study of the multiaxial ferroelastic behavior of Tb0.3Dy0.7Fe1.95 alloys, Smart Mater. Struct. 17, 065001 (2008).

    Article  ADS  Google Scholar 

  35. X. E. Liu, Magnetostrictive Constitutive Model and Its Application in Numerical Simulation of Thin Film GMA, Dissertation for Doctoral Degree (Lanzhou University, Lanzhou, 2004).

    Google Scholar 

  36. Y Shi, Modeling of nonlinear magnetoelectric coupling in layered magnetoelectric nanocomposites with surface effect, Compos. Struct. 185, 474 (2018).

    Article  Google Scholar 

  37. J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayer, Appl. Phys. Lett. 86, 202504 (2005).

    Article  ADS  Google Scholar 

  38. Y. Niu, and H. Ren, A miniaturized low frequency (LF) magneto-electric receiving antenna with an integrated DC magnetic bias, Appl. Phys. Lett. 118, 264104 (2021).

    Article  ADS  CAS  Google Scholar 

  39. J. F. Blackburn, M. Vopsaroiu, and M. G. Cain, Verified finite element simulation ofmultiferroic structures: Solutions for conducting and insulating systems, J. Appl. Phys. 104, 074104 (2008).

    Article  ADS  Google Scholar 

  40. H. M. Zhou, M. H. Li, X. H. Li, and D. G. Zhang, An analytical and explicit multi-field coupled nonlinear constitutive model for Terfenol-D giant magnetostrictive material, Smart Mater. Struct. 25, 085036 (2016).

    Article  ADS  Google Scholar 

  41. Y. Shi, N. Li, and Y. Yang, Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions, Chin. Phys. B 30, 107503 (2021).

    Article  ADS  CAS  Google Scholar 

  42. M. Lan, W. Yang, X. Liang, S. Hu, and S. Shen, Vibration modes of flexoelectric circular plate, Acta Mech. Sin. 38, 422063 (2022).

    Article  ADS  Google Scholar 

  43. M. Rinaldi, C. Zuniga, C. Chengjie Zuo, and G. Piazza, Super-high-frequency two-port AlN contour-mode resonators for RF applications, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 57, 38 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2022JM020), the Fundamental Research Funds for the Central Universities (Grant No. ZYTS23024), and the Innovation Fund of Xidian University (Grant No. YJSJ23002).

Author information

Authors and Affiliations

Authors

Contributions

Yang Shi: Conceptualization, Methodology, Writing–original draft, Writing–review & editing, Supervision. Baoxin Lei: Writing–original draft, Writing–review & editing, Formal analysis, Software, Validation. Zhixiong You: Writing–review & editing, Validation.

Corresponding author

Correspondence to Yang Shi  (师阳).

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Lei, B. & You, Z. Modeling of the near-field radiation of acoustically actuated magnetoelectric antennas. Acta Mech. Sin. 39, 523120 (2023). https://doi.org/10.1007/s10409-023-23120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23120-x

Navigation