Abstract
This paper presents an analytical model for the near-field radiation of acoustically actuated magnetoelectric (ME) antennas considering a fully magneto-elastic coupled magnetostrictive constitutive relation. The nonlinearity of the magnetostrictive phase is introduced into the governing equation of the ME antennas using the equivalent parameter method, resulting in analytical expressions of the near-field radiation. The strain distribution in the ME antenna is calculated first and then extracted as a source for solving the magnetic flux density, energies, average radiated power, and radiation impedance. The predictions for the admittance and impedance show good agreement with simulation and experimental data, respectively. The effects of the external stimuli on the radiation performance are investigated, to theoretically evaluate the ME antennas operated in complex magnetic and stress conditions. The required magnetic bias corresponding to the maximum radiation of the ME antennas is determined, which is changed with the pre-stress. In addition, the radiation power can be improved by tensile stress before the required magnetic bias or by compressive stress after the required magnetic bias. The present model may provide a basis for the evaluation and regulation of acoustically actuated ME antenna.
摘要
本文在考虑全磁-弹耦合的磁致伸缩本构关系的基础上, 提出了声激励磁电天线的近场辐射解析模型. 采用等效参数法将磁致伸缩相的非线性引入到磁电天线的控制方程, 推导出了天线近场辐射的解析表达式. 首先计算了磁电天线中的应力分布, 然后将应力场作为源来求解磁感应强度、辐射能、平均辐射功率和辐射阻抗等. 对于导纳和阻抗理论预测值与数值仿真和实验结果完全吻合. 研究了外界激励对电磁天线辐射性能的影响, 从理论上评估了磁电天线在复杂磁场和应力条件下的工作性能; 确定了磁电天线实现最大辐射所需的最优偏磁场值, 并发现该磁场值随预应力的变化规律. 研究表明, 当外加磁场小(大)于最优偏磁场时, 采用拉(压)应力可以提高辐射功率. 本文模型有望为声激励磁电天线的性能评估和调节提供一定的理论依据.
References
T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang, M. Li, X. Wang, A. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M. E. McConney, B. M. Howe, Z. Hu, J. G. Jones, G. J. Brown, and N. X. Sun, Acoustically actuated ultra-compact NEMS magnetoelectric antennas, Nat. Commun. 8, 296 (2017).
M. Zaeimbashi, M. Nasrollahpour, A. Khalifa, A. Romano, X. Liang, H. Chen, N. Sun, A. Matyushov, H. Lin, C. Dong, Z. Xu, A. Mittal, I. Martos-Repath, G. Jha, N. Mirchandani, D. Das, M. Onabajo, A. Shrivastava, S. Cash, and N. X. Sun, Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing, Nat. Commun. 12, 3141 (2021).
H. Peng, N. Li, F. Li, L. Zhang, and K. Dong, Development simulation of an inflatable membrane antenna based on extended position-based dynamics, Acta Mech. Sin. 38, 521304 (2022).
D. Mukherjee, and D. Mallick, A self-biased, low-frequency, miniaturized magnetoelectric antenna for implantable medical device applications, Appl. Phys. Lett. 122, 014102 (2023).
M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, and S. Dmitry, Recent advances and future directions on underwater wireless communications, Arch Computat. Methods Eng. 27, 1379 (2020).
X. Yun, W. Lin, R. Hu, Y. Liu, X. Wang, G. Yu, Z. Zeng, X. Zhang, and B. Zhang, Bandwidth-enhanced magnetoelectric antenna based on composite bulk acoustic resonators, Appl. Phys. Lett. 121, 033501 (2022).
C. Dong, X. Wang, H. Lin, Y. Gao, N. X. Sun, Y. He, M. Li, C. Tu, Z. Chu, X. Liang, H. Chen, Y. Wei, and M. Zaeimbashi, A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas, Antennas Wirel. Propag. Lett. 19, 398 (2020).
J. D. Schneider, J. P. Domann, M. K. Panduranga, S. Tiwari, P. Shirazi, Z. J. Yao, C. Sennott, D. Shahan, S. Selvin, G. McKnight, W. Wall, R. N. Candler, Y. E. Wang, and G. P. Carman, Experimental demonstration and operating principles of a multiferroic antenna, J. Appl. Phys. 126, 224104 (2019).
R. V. Petrov, A. S. Tatarenko, S. Pandey, G. Srinivasan, J. V. Mantese, and R. Azadegan, Miniature antenna based on magnetoelectric composites, Electron. Lett. 44, 506 (2008).
J. S. McLean, A re-examination of the fundamental limits on the radiation Q of electrically small antennas, IEEE Trans. Antennas Propagat. 44, 672 (1996).
J. C. E. Sten, A. Hujanen, and P. K. Koivisto, Quality factor of an electrically small antenna radiating close to a conducting plane, IEEE Trans. Antennas Propagat. 49, 829 (2001).
G. Liu, and S. Dong, Uniformity of direct and converse magneto-electric effects in magnetostrictive-piezoelectric composites, Appl. Phys. Lett. 105, 122903 (2014).
S. H. Zhang, J. P. Zhou, Z. Shi, P. Liu, and C. Y. Deng, Enhancing magnetic field sensitivity and giant converse magnetoelectric effect in laminate composite of Terfenol-D and multilayer piezoelectric vibrator, J. Alloys Compd. 590, 46 (2014).
Z. Yao, Y. E. Wang, S. Keller, and G. P. Carman, Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound, IEEE Trans. Antennas Propagat. 63, 3335 (2015).
Z. Yao, S. Tiwari, T. Lu, J. Rivera, K. Q. T. Luong, R. N. Candler, G. P. Carman, and Y. E. Wang, Modeling of multiple dynamics in the radiation of bulk acoustic wave antennas, IEEE J. Multiscale Multiphys. Comput. Tech. 5, 5 (2020).
J. Li, H. Dong, X. Pan, C. Peng, X. Gan, Y. Gao, W. Ren, and X. He, Influence of permeability dispersion on radiation of BAW antenna: Modeling of multiphysics dynamic coupling, IEEE Trans. Antennas Propagat. 70, 10318 (2022).
Y. Du, Y. Xu, J. Wu, J. Qiao, Z. Wang, Z. Hu, Z. Jiang, and M. Liu, Very-low-frequency magnetoelectric antennas for portable underwater communication: Theory and experiment, IEEE Trans. Antennas Propagat. 71, 2167 (2023).
J. Li, C. Peng, S. Chen, Y. Gao, W. Ren, and X. He, Modeling and suppression of eddy current loss for BAW magnetoelectric devices, IEEE Trans. Magn. 57, 1 (2021).
G. Xu, S. Xiao, Y. Li, and B. Z. Wang, Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite, Phys. Lett. A 385, 126959 (2021).
F. R. Rostami, A. Khaleghi, and I. Balasingham, Computer simulation of magnetoelectric antenna and performance comparison with microloop, IEEE Access 10, 64473 (2022).
J. Du, X. Jin, and J. Wang, Love wave propagation in layered magneto-electro-elastic structures with initial stress, Acta Mech. 192, 169 (2007).
J. Zhang, C. Fang, and G. J. Weng, Direct and converse nonlinear magnetoelectric coupling in multiferroic composites with ferromagnetic and ferroelectric phases, Proc. R. Soc. A 475, 20190002 (2019).
H. M. Zhou, X. W. Ou, Y. Xiao, S. X. Qu, and H. P. Wu, An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings, Smart Mater. Struct. 22, 035018 (2013).
W. Wang, M. Li, F. Jin, T. He, and Y. Ma, Nonlinear magnetic-mechanical-thermo-electric coupling characteristic analysis on the coupled extensional and flexural vibration of flexoelectric energy nanoharvester with surface effect, Compos. Struct. 308, 116687 (2023).
Y. Shi, B. Lei, Y. Wang, and J. Ye, An analytical model for the self-bias magnetoelectric effect of magnetization-graded magnetoelectric composites, Compos. Struct. 300, 116164 (2022).
Y. W. Gao, and J. J. Zhang, Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder, Acta Mech. Sin. 28, 385 (2012).
T. A. Do, H. Talleb, A. Gensbittel, and Z. Ren, 3-D finite element analysis of magnetoelectric composites accounting for material nonlinearity and eddy currents, IEEE Trans. Magn. 55, 1 (2019).
Y. Shi, N. Li, Y. Wang, and J. Ye, An analytical model for nonlinear magnetoelectric effect in laminated composites, Compos. Struct. 263, 113652 (2021).
J. Zhang, X. Wang, X. Chen, H. Du, and G. J. Weng, Finite element analysis of the magnetoelectric effect on hybrid magnetoelectric composites, Compos. Struct. 296, 115876 (2022).
S. Sudersan, S. Maniprakash, and A. Arockiarajan, Nonlinear magnetoelectric effect in unsymmetric laminated composites, Smart Mater. Struct. 27, 125005 (2018).
S. Sudersan, and A. Arockiarajan, Thermal and prestress effects on nonlinear magnetoelectric effect in unsymmetric composites, Compos. Struct. 223, 110924 (2019).
X. J. Zheng, and X. E. Liu, A nonlinear constitutive model for Terfenol-D rods, J. Appl. Phys. 97, 053901 (2005).
X. J. Zheng, and L. Sun, A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials, J. Appl. Phys. 100, 063906 (2006).
Y. Pei, and D. Fang, Experimental study of the multiaxial ferroelastic behavior of Tb0.3Dy0.7Fe1.95 alloys, Smart Mater. Struct. 17, 065001 (2008).
X. E. Liu, Magnetostrictive Constitutive Model and Its Application in Numerical Simulation of Thin Film GMA, Dissertation for Doctoral Degree (Lanzhou University, Lanzhou, 2004).
Y Shi, Modeling of nonlinear magnetoelectric coupling in layered magnetoelectric nanocomposites with surface effect, Compos. Struct. 185, 474 (2018).
J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayer, Appl. Phys. Lett. 86, 202504 (2005).
Y. Niu, and H. Ren, A miniaturized low frequency (LF) magneto-electric receiving antenna with an integrated DC magnetic bias, Appl. Phys. Lett. 118, 264104 (2021).
J. F. Blackburn, M. Vopsaroiu, and M. G. Cain, Verified finite element simulation ofmultiferroic structures: Solutions for conducting and insulating systems, J. Appl. Phys. 104, 074104 (2008).
H. M. Zhou, M. H. Li, X. H. Li, and D. G. Zhang, An analytical and explicit multi-field coupled nonlinear constitutive model for Terfenol-D giant magnetostrictive material, Smart Mater. Struct. 25, 085036 (2016).
Y. Shi, N. Li, and Y. Yang, Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions, Chin. Phys. B 30, 107503 (2021).
M. Lan, W. Yang, X. Liang, S. Hu, and S. Shen, Vibration modes of flexoelectric circular plate, Acta Mech. Sin. 38, 422063 (2022).
M. Rinaldi, C. Zuniga, C. Chengjie Zuo, and G. Piazza, Super-high-frequency two-port AlN contour-mode resonators for RF applications, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 57, 38 (2010).
Acknowledgements
This work was supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2022JM020), the Fundamental Research Funds for the Central Universities (Grant No. ZYTS23024), and the Innovation Fund of Xidian University (Grant No. YJSJ23002).
Author information
Authors and Affiliations
Contributions
Yang Shi: Conceptualization, Methodology, Writing–original draft, Writing–review & editing, Supervision. Baoxin Lei: Writing–original draft, Writing–review & editing, Formal analysis, Software, Validation. Zhixiong You: Writing–review & editing, Validation.
Corresponding author
Ethics declarations
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Shi, Y., Lei, B. & You, Z. Modeling of the near-field radiation of acoustically actuated magnetoelectric antennas. Acta Mech. Sin. 39, 523120 (2023). https://doi.org/10.1007/s10409-023-23120-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10409-023-23120-x