Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: a review and perspective

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The study of irradiation hardening and embrittlement is critically important for the development of next-generation structural materials tolerant to neutron irradiation, and could dramatically affect the approach to the design of components for advanced nuclear reactors. In addition, a growing interest is observed in the field of research and development of irradiation-resistant materials. This review aims to provide an overview of the theoretical development related to irradiation hardening and embrittlement at moderate irradiation conditions achieved in recent years, which can help extend our fundamental knowledge on nuclear structural materials. After a general introduction to the irradiation effects on metallic materials, recent research progress covering theoretical modelling is summarized for different types of structural materials. The fundamental mechanisms are elucidated within a wide range of temporal and spatial scales. This review closes with the current understanding of irradiation hardening and embrittlement, and puts some perspectives deserving further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Reprinted with permission from Ref. [20]. Copyright 2016 by Macmillan Publishers)

Fig. 4

(Reprinted with permission from Ref. [50]. Copyright 2017 by Elsevier)

Fig. 5
Fig. 6
Fig. 7

(Reprinted with permission from Ref. [87]. Copyright 2008 by Elsevier)

Fig. 8

(Reprinted with permission from Ref. [90]. Copyright 2017 by Elsevier)

Similar content being viewed by others

References

  1. Zinkle, S.J., Snead, L.L.: Designing radiation resistance in materials for fusion energy. In: Clarke, D.R. (ed.) Annual Review of Materials Research, pp. 241–267. Annual Reviews, Palo Alto (2014)

    Google Scholar 

  2. Shimada, M., Campbell, D.J., Mukhovatov, V., et al.: Progress in the ITER physics basis. Chapter 1: overview and summary. Nucl. Fusion 47, S1–S17 (2007)

    Google Scholar 

  3. Zinkle, S.J.: Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005)

    Google Scholar 

  4. Li, M., Eldrup, M., Byun, T.S., et al.: Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum. J. Nucl. Mater. 376, 11–28 (2008)

    Google Scholar 

  5. Garner, F.A., Toloczko, M.B., Sencer, B.H.: Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276, 123–142 (2000)

    Google Scholar 

  6. Garner, F.A., Toloczko, M.B.: Irradiation creep and void swelling of austenitic stainless steels at low displacement rates in light water energy systems. J. Nucl. Mater. 251, 252–261 (1997)

    Google Scholar 

  7. Yamashita, S., Yano, Y., Tachi, Y., et al.: Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels. J. Nucl. Mater. 386, 135–139 (2009)

    Google Scholar 

  8. Terentyev, D.A., Malerba, L., Chakarova, et al.: Displacement cascades in FE-CR: a molecular dynamics study. J. Nucl. Mater. 349, 119–132 (2006)

    Google Scholar 

  9. Terentyev, D.A., Malerba, L., Hou, M.: Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B 75, 104108 (2007)

    Google Scholar 

  10. Nordlun, K., Zinkle, S.J., Sand, A.E., et al.: Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512, 450–479 (2018)

    Google Scholar 

  11. Terentyev, D., Bacon, D.J., Osetsky, Y.N.: Interaction of an edge dislocation with voids in alpha-iron modelled with different interatomic potentials. J. Phys. Condens. Mat. 20, 445007 (2008)

    Google Scholar 

  12. Becquart, C.S., Domain, C.: Modeling microstructure and irradiation effects. Metall. Mater. Tans. A 42A, 852–870 (2011)

    Google Scholar 

  13. Singh, B.N., Leffers, T., Horsewell, A.: Dislocation and void segregation in copper during neutron irradiation. Pholos. Mag. 53, 233–242 (1986)

    Google Scholar 

  14. Brimbal, D., Decamps, B., Barbu, A., et al.: Dual-beam irradiation of alpha-iron: heterogeneous bubble formation on dislocation loops. J. Nucl. Mater. 418, 313–315 (2011)

    Google Scholar 

  15. Kuksenko, V., Pareige, C., Pareige, P.: Cr precipitation in neutron irradiated industrial purity Fe–Cr model alloys. J. Nucl. Mater. 432, 160–165 (2013)

    Google Scholar 

  16. Briceno, M., Kacher, J., Robertson, I.M.: Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature. J. Nucl. Mater. 433, 390–396 (2013)

    Google Scholar 

  17. Yang, S., Yang, Z., Wang, H., et al.: Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel. J. Nucl. Mater. 488, 215–221 (2017)

    Google Scholar 

  18. Was, G.S., Bruemmer, S.M.: Effects of irraidation on intergranular stress corrosion cracking. J. Nucl. Mater. 216, 326–347 (1994)

    Google Scholar 

  19. Chopra, O.K., Rao, A.S.: A review of irradiation effects on LWR core internal materials—IASCC susceptibility and crack growth rates of austenitic stainless steels. J. Nucl. Mater. 409, 235–256 (2011)

    Google Scholar 

  20. Knaster, J., Moeslang, A., Muroga, T.: Materials research for fusion. Nat. Phys. 12, 424–434 (2016)

    Google Scholar 

  21. Acosta, B., Sevini, F.: Evaluation of irradiation damage effect by applying electric properties based techniques. Nucl. Eng. Des. 229, 165–173 (2004)

    Google Scholar 

  22. Song, C.: Irradiation effects on Zr-2.5Nb in power reactors. CNL Nucl. Rev. 5, 17–36 (2016)

    Google Scholar 

  23. Azevedo, C.R.F.: A review on neutron-irradiation-induced hardening of metallic components. Eng. Fail. Anal. 18, 1921–1942 (2011)

    Google Scholar 

  24. Byun, T.S., Farrell, K., Li, M.: Deformation in metals after low-temperature irradiation: part I—mapping macroscopic deformation modes on true stress-dose plane. Acta Mater. 56, 1044–1055 (2008)

    Google Scholar 

  25. Byun, T.S., Farrell, K., Li, M.: Deformation in metals after low-temperature irradiation: part II—irradiation hardening, strain hardening, and stress ratios. Acta Mater. 56, 1056–1064 (2008)

    Google Scholar 

  26. Kuksenko, V., Pareige, C., Genevois, C., et al.: Effect of neutron-irradiation on the microstructure of a Fe-12at.%Cr alloy. J. Nucl. Mater. 415, 61–66 (2011)

    Google Scholar 

  27. Pokor, C., Brechet, Y., Dubuisson, P., et al.: Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: evolution of the microstructure. J. Nucl. Mater. 326, 19–29 (2004)

    Google Scholar 

  28. Yan, C., Wang, R., Wang, Y., et al.: Effects of ion irradiation on microstructure and properties of zirconium alloys—a review. Nucl. Eng. Technol. 47, 323–331 (2015)

    Google Scholar 

  29. Chen, Y.: Irradiation effects of ht-9 martensitic steel. Nucl. Eng. Technol. 45, 311–322 (2013)

    Google Scholar 

  30. Scott, P.: A review of irradiation assisted stress corrosion cracking. J. Nucl. Mater. 211, 101–122 (1994)

    Google Scholar 

  31. Xu, S., Zheng, W., Yang, L.: A review of irradiation effects on mechnical properties of candidate SCWR fuel cladding alloys for design considerations. CNL Nucl. Rev. 5, 309–331 (2016)

    Google Scholar 

  32. Kurtz, R.J., Alamo, A., Lucon, E., et al.: Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. J. Nucl. Mater. 386–88, 411–417 (2009)

    Google Scholar 

  33. Shin, C., Jin, H.-H., Kim, M.-W.: Evaluation of the depth-dependent yield strength of a nanoindented ion-irradiated Fe–Cr model alloy by using a finite element modeling. J. Nucl. Mater. 392, 476–481 (2009)

    Google Scholar 

  34. Yu, L., Xiao, X., Chen, L., et al.: A micromechanical model for nano-metallic-multilayers with helium irradiation. Int. J. Solids Struct. 102, 267–274 (2016)

    Google Scholar 

  35. Dunn, A., Dingreville, R., Capolungo, L.: Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated alpha-Fe. Modell. Simul. Mater. Sci. Eng. 24, 015005 (2016)

    Google Scholar 

  36. Chakraborty, P., Biner, S.B.: Crystal plasticity modeling of irradiation effects on flow stress in pure-iron and iron–copper alloys. Mech. Mater. 101, 71–80 (2016)

    Google Scholar 

  37. Erinosho, T.O., Dunne, F.P.E.: Strain localization and failure in irradiated zircaloy with crystal plasticity. Int. J. Plast. 71, 170–194 (2015)

    Google Scholar 

  38. Bergner, F., Pareige, C., Hernandez-Mayoral, M., et al.: Application of a three-feature dispersed-barrier hardening model to neutronirradiated Fe–Cr model alloys. J. Nucl. Mater. 448, 96–102 (2014)

    Google Scholar 

  39. Orowan, E.: A type of plastic deformation new in metals. Nature 149, 643–644 (1942)

    Google Scholar 

  40. Singh, B.N., Foreman, A.J.E., Trinkaus, H.: Radiation hardening revisited: role of intracascade clustering. J. Nucl. Mater. 249, 103–115 (1997)

    Google Scholar 

  41. Friedel, J.: On the linear work hardening mate of face-centered cubic single crystals. Philos. Mag. 46, 1169–1186 (1955)

    Google Scholar 

  42. Kroupa, F., Hirsch, P.B.: Elastic interaction between prismatic dislocation loops and straight dislocations. Discuss. Faraday Soc. 38, 49–55 (1964)

    Google Scholar 

  43. Bacon, D.J., Kocks, U.F., Scattergood, R.O.: The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 28, 1241–1263 (1973)

    Google Scholar 

  44. Kasada, R., Takayama, Y., Yabuuchi, K., et al.: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 86, 2658–2661 (2011)

    Google Scholar 

  45. Liu, P.P., Wan, F.R., Zhan, Q.: A model to evaluate the nano-indentation hardness of ion-irradiated materials. Nucl. Instrum. Methods B 342, 13–18 (2015)

    Google Scholar 

  46. Oka, H., Sato, Y., Hashimoto, N., et al.: Evaluation of multi-layered hardness in ion-irradiated stainless steel by nano-indentation technique. J. Nucl. Mater. 462, 470–474 (2015)

    Google Scholar 

  47. Takayama, Y., Kasada, R., Yabuuchi, K., et al.: Evaluation of irradiation hardening of Fe-ion irradiated F82H by nano-indentation techniques. In: Nie, J.F. and Morton, A. (eds.) Pricm 7, pts 1–3. p. 2915 (2010)

  48. Yabuuchi, K., Kuribayashi, Y., Nogami, S., et al.: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation. J. Nucl. Mater. 446, 142–147 (2014)

    Google Scholar 

  49. Xiao, X., Yu, L.: A hardening model for the cross-sectional nanoindentation of ion-irradiated materials. J. Nucl. Mater. 511, 220–230 (2018)

    Google Scholar 

  50. Xiao, X., Chen, Q., Yang, H., et al.: A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 485, 80–89 (2017)

    Google Scholar 

  51. Xiao, X., Yu, L.: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials. J. Nucl. Mater. 503, 110–115 (2018)

    Google Scholar 

  52. Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005)

    Google Scholar 

  53. Huang, H.F., Li, D.H., Li, J.J., et al.: Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under Xenon ion irradiation. Mater. Trans. 55, 1243–1247 (2014)

    Google Scholar 

  54. Liu, X., Wang, R., Jiang, J., et al.: Slow positron beam and nanoindentation study of irradiation-related defects in reactor vessel steels. J. Nucl. Mater. 451, 249–254 (2014)

    Google Scholar 

  55. Liu, X., Wang, R., Ren, A., et al.: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation. J. Nucl. Mater. 444, 1–6 (2014)

    Google Scholar 

  56. Li, S., Wang, Y., Dai, X., et al.: Evaluation of hardening behaviors in ion-irradiated Fe-9Cr and Fe-20Cr alloys by nanoindentation technique. J. Nucl. Mater. 478, 50–55 (2016)

    Google Scholar 

  57. Xiao, X., Terentyev, D., Yu, L., Bakaev, A., et al.: Investigation of the thermo-mechanical behavior of neutron-irradiated Fe–Cr alloys by self consistent plasticity theory. J. Nucl. Mater. 477, 123–133 (2016)

    Google Scholar 

  58. Hiratani, M., Bulatov, V.V.: Solid-solution hardening by point-like obstacles of different kinds. Philos. Mag. Lett. 84, 461–470 (2004)

    Google Scholar 

  59. Arsenlis, A., Wirth, B.D., Rhee, M.: Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84, 3617–3635 (2004)

    Google Scholar 

  60. De Rahul, S.: Multiscale modeling of irradiated polycrystalline fcc metals. Int. J. Solids Struct. 51, 3919–3930 (2014)

    Google Scholar 

  61. Xiao, X., Song, D., Chu, H., et al.: Mechanical behaviors of irradiated fcc polycrystals with nanotwins. Int. J. Plast. 74, 110–126 (2015)

    Google Scholar 

  62. Xiao, X.Z., Song, D.K., Xue, J.M., et al.: A size-dependent tensorial plasticity model for fcc single crystal with irradiation. Int. J. Plast. 65, 152–167 (2015)

    Google Scholar 

  63. Xiao, X.Z., Song, D.K., Chu, H.J., et al.: Mechanical properties for irradiated face-centred cubic nanocrystalline metals. Proc. R. Soc. A Math. Phy. 471, 20140832 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Xiao, X., Song, D., Xue, J., et al.: A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated fcc metallic polycrystals. J. Mech. Phys. Solids 78, 1–16 (2015)

    MathSciNet  Google Scholar 

  65. Li, D., Zbib, H., Sun, X., et al.: Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics. Int. J. Plast. 52, 3–17 (2014)

    Google Scholar 

  66. Patra, A., McDowell, D.L.: Continuum modeling of localized deformation in irradiated bcc materials. J. Nucl. Mater. 432, 414–427 (2013)

    Google Scholar 

  67. Patra, A., McDowell, D.L.: A void nucleation and growth based damage framework to model failure initiation ahead of a sharp notch in irradiated bcc materials. J. Mech. Phys. Solids 74, 111–135 (2015)

    MathSciNet  Google Scholar 

  68. Patra, A., McDowell, D.L.: Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater. 110, 364–376 (2016)

    Google Scholar 

  69. Barton, N.R., Arsenlis, A., Marian, J.: A polycrystal plasticity model of strain localization in irradiated iron. J. Mech. Phys. Solids 61, 341–351 (2013)

    Google Scholar 

  70. Patra, A., McDowell, D.L.: Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos. Mag. 92, 861–887 (2012)

    Google Scholar 

  71. Onimus, F., Bechade, J.-L.: A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys. J. Nucl. Mater. 384, 163–174 (2009)

    Google Scholar 

  72. Krishna, S., De, S.: A temperature and rate-dependent micromechanical model of molybdenum under neutron irradiation. Mech. Mater. 43, 99–110 (2011)

    Google Scholar 

  73. Arsenlis, A., Rhee, M., Hommes, G., et al.: A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Mater. 60, 3748–3757 (2012)

    Google Scholar 

  74. Saleh, M., Zaidi, Z., Ionescu, M., et al.: Relationship between damage and hardness profiles in ion irradiated ss316 using nanoindentation-experiments and modelling. Int. J. Plast. 86, 151–169 (2016)

    Google Scholar 

  75. Saleh, M., Xu, A., Hurt, C., et al.: Oblique cross-section nanoindentation for determining the hardness change in ion-irradiated steel. Int. J. Plast. 112, 242–256 (2019)

    Google Scholar 

  76. Deo, C., Tom, C., Lebensohn, R., et al.: Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors. J. Nucl. Mater. 377, 136–140 (2008)

    Google Scholar 

  77. Li, D., Zbib, H., Garmestani, H., et al.: Modeling of irradiation hardening of polycrystalline materials. Comp. Mater. Sci. 50, 2496–2501 (2011)

    Google Scholar 

  78. Song, D., Xiao, X., Xue, J., et al.: Mechanical properties of irradiated multi-phase polycrystalline bcc materials. Acta Mech. Sin. 31, 191–204 (2015)

    MathSciNet  MATH  Google Scholar 

  79. Odette, G.R., Nanstad, R.K.: Predictive reactor pressure vessel steel irradiation embrittlement models: issues and opportunities. JOM 61, 17–23 (2009)

    Google Scholar 

  80. Chen, Z.-A., Wang, L.Y., Chao, Y.-J., et al.: A constraintequivalent approach for assessing fracture toughness of RPV steels under neutron irradiation. Nucl. Eng. Des. 250, 53–59 (2012)

    Google Scholar 

  81. Minkin, A.I., Margolin, B.Z., Smirnov, V.I., et al.: Improvement of a model to predict static fracture toughness of austenitic materials under neutron irradiation. Inorg. Mater. Appl. Res. 5, 617–25 (2014)

    Google Scholar 

  82. Lu, Z., Faulkner, R.G., Flewitt, P.E.J.: Irradiation-induced impurity segregation and ductile-to-brittle transition temperature shift in high chromium ferritic/martensitic steels. J. Nucl. Mater. 367, 621–626 (2007)

    Google Scholar 

  83. Chopra, O.K., Rao, A.S.: A review of irradiation effects on LWR core internal materials-neutron embrittlement. J. Nucl. Mater. 412, 195–208 (2011)

    Google Scholar 

  84. Scibetta, M., Ferreno, D., Gorrochategui, I., et al.: Characterisation of the fracture properties in the ductile to brittle transition region of the weld material of a reactor pressure vessel. J. Nucl. Mater. 411, 25–40 (2011)

    Google Scholar 

  85. Wallin, K., Saario, T., Torronen, K.: Statistical model for carbide induced brittle fracture in steel. Metal Sci. 18, 13–16 (1984)

    Google Scholar 

  86. Wallin, K.: The scatter in KIC results. Eng. Fract. Mech. 19, 1085–1093 (1984)

    Google Scholar 

  87. Lee, B.-S., Kim, M.-C., Kim, M.-W., et al.: Master curve techniques to evaluate an irradiation embrittlement of nuclear reactor pressure vessels for a long-term operation. Int. J. Press. Vessels Pip. 85, 593–599 (2008)

    Google Scholar 

  88. Kotrechko, S., Meshkov, Y.: A new approach to estimate irradiation embrittlement of pressure vessel steels. Int. J. Press. Vessels Pip. 85, 336–343 (2008)

    Google Scholar 

  89. Moskovic, R., Jordinson, C., Stephens, D.A., et al.: A bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal. Metall. Mater. Trans. A 31, 445–459 (2000)

    Google Scholar 

  90. Lin, Y., Yang, W., Tong, Z.F., et al.: Charpy impact test on A508-3 steel after neutron irradiation. Eng. Fail. Anal. A 82, 733–740 (2017)

    Google Scholar 

  91. Konstantinovic, M.J.: Probabilistic fracture mechanics of irradiation assisted stress corrosion cracking in stainless steels. In: 21st European conference on fracture, vol. 2, pp. 3792–3798 (2016)

  92. Murakami, S., Miyazaki, A., Mizuno, M.: Modeling of irradiation embrittlement of reactor pressure vessel steels. J. Eng. Matter. Technol. ASME 122, 60–66 (2000)

    Google Scholar 

  93. Margolin, B., Sorokin, A., Smirnov, V., et al.: Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels. J. Nucl. Mater. 452, 595–606 (2014)

    Google Scholar 

  94. Margolin, B., Sorokin, A.: Physical and mechanical modeling of the neutron irradiation effect on ductile fracture. Part 2. Prediction of swelling effect on drastic decrease in strength. J. Nucl. Mater. 452, 607–613 (2014)

    Google Scholar 

  95. Kayano, H., Kimura, A., Narui, M., et al.: Irradiation embrittlement of neutron-irradiation low activation ferritic steels. J. Nucl. Mater. 155, 978–981 (1988)

    Google Scholar 

  96. Harries, D.R.: Neutron irradiation-induced embrittlement in type 316 and other austenitic steels and alloys. J. Nucl. Mater. 82, 2–21 (1979)

    Google Scholar 

  97. Porter, D.L., Garner, F.A.: Irradiation creep and embrittlement behavior of AISI 316 stainless steel at very high neutron fluences. J. Nucl. Mater. 159, 114–121 (1988)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science foundation of China (NSFC) (Grants 11632001, 11521202, 11802344) and Natural Science Foundation of Hunan Province, China (Grant 2019JJ50809). Xiao thanks the initial funding supported by Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Duan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 3175 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Terentyev, D., Chu, H. et al. Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: a review and perspective. Acta Mech. Sin. 36, 397–411 (2020). https://doi.org/10.1007/s10409-020-00931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00931-w

Keywords

Navigation