Abstract
For real-time precise orbit determination (POD) of low earth orbit (LEO) satellites, high-accuracy global navigation satellite system (GNSS) orbit and clock products are necessary in real time. Recently, the Japanese multi-GNSS advanced demonstration of orbit and clock analysis precise point positioning (PPP) service and the new generation of the Australian/New Zealand satellite-based augmentation system (SBAS)-aided PPP service provide free and precise GNSS products that are directly broadcast through the navigation and geostationary earth orbit satellites, respectively. With the high quality of both products shown in this study, a 3D accuracy of centimeters can be achieved in the post-processing mode for the reduced-dynamic orbits of small LEO satellites having a duty cycle down to 40% and at sub-dm to dm level for the kinematic orbits. The results show a promising future for high-accuracy real-time POD onboard LEO satellites benefiting from the precise free-of-charge PPP corrections broadcast by navigation systems or SBAS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The MADOCA L6E PPP products were obtained from the JAXA ftp://mgmds01.tksc.jaxa.jp/mdc1/. The IGS final, ultra-rapid, and the RTS products were obtained from the NASA CDDIS https://cddis.nasa.gov/archive/gnss/products/rtpp/. The CNES real-time products were obtained from http://www.ppp-wizard.net/products/REAL_TIME/. The data of GRACE-FO-1 were obtained from the NASA JPL https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/L1B/JPL/RL04/ASCII/. The observation data and the reference orbits of the Sentinel-3B were obtained from the ESA via https://scihub.copernicus.eu/gnss/#/home and https://sentinel.esa.int/web/sentinel/missions/sentinel-3/ground-segment/pod/products-requirements, respectively. The SBAS-aided PPP L5 corrections are available from the corresponding author on reasonable request. The data are processed with the Bernese GNSS Software version 5.2.
References
Barrios J, Caro J, Calle JD, Carbonell E, Pericacho JG, Fernández G, Esteban VM, Fernández MA, Bravo F, Torres B (2018) Update on Australia and New Zealand DFMC SBAS and PPP System Results. In Proceedings of ION GNSS + 2018. Institute of Navigation, Miami, Florida, USA, September 24–28, pp 1038–1067
Beutler G, Schildknecht T, Hugentobler U, Gurtner W (2003) Orbit determination in satellite geodesy. Adv Space Res 31(8):1853–1868. https://doi.org/10.1016/S0273-1177(03)00171-6
Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS Software Version 5.2. University of Bern, Bern Open Publishing. https://doi.org/10.7892/boris.72297
El-Mowafy A, Cheung N, Rubinov E (2020) First results of using the second generation SBAS in Australian urban and suburban road environments. J Spat Sci 65:99–121. https://doi.org/10.1080/14498596.2019.1664943
ESA (2012) SENTINEL-3, ESA’s Global Land and Ocean Mission for GMES Operational Services. European Space Agency. https://sentinel.esa.int/documents/247904/351187/S3_SP-1322_3.pdf
Fernández M (2019) Sentinel-3 Properties for GPS POD, Copernicus Sentinel-1, -2 and -3 Precise Orbit Determination Service (SENTINELSPOD), GMV-GMESPOD-TN-0027, Version 1.7. https://sentinels.copernicus.eu/documents/247904/3372613/Sentinel-3-GPS-POD-Properties.pdf
Flechtner F, Morton P, Watkins M, Webb F (2014) Status of the GRACE follow-on mission. In: Gravity, geoid and height systems, IAG Symposia, vol 141. Springer, Cham, pp 117–121. https://doi.org/10.1007/978-3-319-10837-7_15
GPAS-Global Positioning Augmentation Service Corporation (2017) L6E MADOCA Data Format http://file.gpas.co.jp/L6E_MADOCA_DataFormat_E.pdf
Griggs E, Kursinski ER, Akos D (2015) Short-term GNSS satellite clock stability. Radio Sci 50(8):813–826. https://doi.org/10.1002/2015RS005667
Hadas T, Bosy J (2015) IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut 19:93–105. https://doi.org/10.1007/s10291-014-0369-5
Hauschild A, Montenbruck O, Steigenberger P (2013) Short-term analysis of GNSS clocks. GPS Solut 17:295–307. https://doi.org/10.1007/s10291-012-0278-4
Hauschild A, Tegedor J, Montenbruck O, Visser H, Markgraf M (2016) Precise onboard orbit determination for LEO satellites with real-time orbit and clock corrections. In Proceedings of ION GNSS + 2016. Institute of Navigation, Portland, Oregon, USA, September 12–16, pp 3715–3723
IGS final (2020) International GNSS Service, GNSS Final Combined Orbit Solution Product. Greenbelt, MD, USA: NASA Crustal Dynamics Data Information System (CDDIS). https://doi.org/10.5067/gnss/gnss_igsorb_001
IGS RTS (2020) International GNSS Service, Decoded orbit solution (30 second) from IGS real-time product streams. NASA Crustal Dynamics Data Information System (CDDIS), Greenbelt. https://doi.org/10.5067/gnss/gnss_igsrtclk30_001
IGS ultra-rapid (2020) International GNSS Service, GNSS ultra-rapid combined orbit solution product. NASA Crustal Dynamics Data Information System (CDDIS), Greenbelt. https://doi.org/10.5067/gnss/gnss_igsuorb_001
JAXA (2020) MADOCA real-time estimate condition. JAXA. https://ssl.tksc.jaxa.jp/madoca/public/public_message_en.html
Johnston G, Riddell A, Hausler G (2017) The international GNSS service. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_33
Lantto S, Gross JN (2018) Precise orbit determination using duty cycled GPS observations. In: 2018 AIAA modeling and simulation technologies conference, Kissimmee, Florida, USA, January 8–12, 2018. https://doi.org/10.2514/6.2018-1393
Laurichesse D, Cerri L, Berthias JP, Mercier F (2013) Real time precise GPS constellation and clocks estimation by means of a Kalman filter. In: Proceedings of ION GNSS + 2013. Institute of Navigation, Nashville, TN, USA, September 16–20, pp 1155–1163
Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. https://doi.org/10.1007/s10236-006-0086-x
Montenbruck O (2017) Space applications. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Cham, pp 933–964. https://doi.org/10.1007/978-3-319-42928-1_32
Montenbruck O, Gill E (2000) Satellite orbits: models, methods and applications. Springer, Berlin. https://doi.org/10.1007/978-3-642-58351-3
Montenbruck O, Ramos-Bosch P (2008) Precision real-time navigation of LEO satellites using global positioning system measurements. GPS Solut 12:187–198. https://doi.org/10.1007/s10291-007-0080-x
Montenbruck O, Gill E, Kroes R (2005) Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solut 9:226–235. https://doi.org/10.1007/s10291-005-0131-0
Montenbruck O, Hauschild A, Andres Y, von Engeln A, Marquardt C (2013) (Near-) real-time orbit determination for GNSS radio occultation processing. GPS Solut 17:199–209. https://doi.org/10.1007/s10291-012-0271-y
Pavlis N, Kenyon S, Factor J, Holmes S (2008) Earth gravitational model 2008. In: SEG technical program expanded abstracts 2008. SEG technical program expanded abstracts. Society of Exploration Geophysicists, pp 761–763. https://doi.org/10.1190/1.3063757
Petit G, Luzum B (2010) IERS conventions. (IERS Technical Note; 36) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, p 179. ISBN 3-89888-989-6
Rothacher M, Beutler G (1998) The role of GPS in the study of global change. Phys Chem Earth 23:1029–1040. https://doi.org/10.1016/S0079-1946(98)00143-8
Rubinov E, Marshall C, Ng L, Tengku AR (2019) Positioning performance of SBAS and PPP technology from the Australia and New Zealand SBAS test-bed. In: Proceedings of the 15th south east asian survey congress (SEASC2019), Darwin, Australia, August 15–18, 1–15. Accessed on December 16, 2020 at https://frontiersi.com.au/wp-content/uploads/2020/11/Rubinov-2019-Results-of-SBAS-Test-bed-SEASC2019.pdf
Sobreira H, Bougard B, Barrios J, Calle JD (2018) SBAS Australian-NZ Test Bed: Exploring New Services. In Proceeding of ION GNSS + 2018. Institute of Navigation, Miami, Florida, September 24–28, pp 2119–2133
Standish E (1998) JPL planetary and lunar ephemerides, DE405/LE405, JPL IOM 312. F-98_048
Subirana JS, Zornoza JJ, Hernández-Pajares M (2013) GNSS data processing. Volume I: Fundamentals and algorithms. ESA TM-23/1, May 2013. ESA Communications, Noordwijk, the Netherlands
Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 1:47–56. https://doi.org/10.5194/adgeo-1-47-2003
Takasu T, Miyoshi M, Kaori K, Satoshi K (2015) QZSS-1 Precise orbit determination by MADOCA. In: International symposium on GNSS, Kyoto, Japan, Nov 16–18, 2015
Tegedor J, Ørpen O, Melgard T, Łapucha D, Visser H (2017) G4 multi-constellation precise point positioning service for high accuracy offshore navigation. Int J Mar Navig Saf Sea Transp 11(3):425–429. https://doi.org/10.12716/1001.11.03.05
Tobías G, Calle JD, Navarro P, Rodríguez I, Rodríguez D (2014) magicGNSS’Real-Time POD and PPP Multi-GNSS Service. In: Proceedings of ION GNSS + 2014. Institute of Navigation, Tampa, Florida, USA, September 8–12, pp 1046–1055
Wang K, Allahvirdi-Zadeh A, El-Mowafy A, Gross JN (2020) A sensitivity study of POD using dual-frequency GPS for CubeSats data limitation and resources. Remote Sens 12(13):2107. https://doi.org/10.3390/rs12132107
Weiss JP, Steigenberger P, Springer T (2017) Orbit and clock product generation. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Cham, pp 983–1010. https://doi.org/10.1007/978-3-319-42928-1_34
Wen HY, Kruizinga G, Paik M, Landerer F, Bertiger W, Sakumura C, Bandikova T, Mccullough C (2019) Gravity recovery and climate experiment follow-on (GRACE-FO). Level-1 Data Product User Handbook vol JPL D-56935 (URS270772)
Wermuth M, Hauschild A, Montenbruck O, Kahle R (2012) TerraSAR-X precise orbit determination with real-time GPS ephemerides. Adv Space Res 50:549–559. https://doi.org/10.1016/j.asr.2012.03.014
Wu SC, Yunck TP, Thornton CL (1991) Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guid Control Dyn 14:24–30. https://doi.org/10.2514/3.20600
Yao Y, He Y, Yi W, Song W, Cao C, Chen M (2017) Method for evaluating real-time GNSS satellite clock offset products. GPS Solut 21:1417–1425. https://doi.org/10.1007/s10291-017-0619-4
Zhang S, Du S, Li W, Wang G (2019) Evaluation of the GPS precise orbit and clock corrections from MADOCA real-time products. Sensors 19(11):2580. https://doi.org/10.3390/s19112580
Acknowledgement
We would like to thank the GMV team for providing the GNSS satellite orbits and clocks of the SBAS-aided L5 PPP service. Special thanks are given to Julián Barrios from GMV and Hiroshi Takiguchi from JAXA for discussions of the processing details of the MADOCA and the SBAS-aided PPP products. The work is funded by the Australian Research Council Discovery Project: Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links (DP 190102444).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Allahvirdi-Zadeh, A., Wang, K. & El-Mowafy, A. POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections. GPS Solut 25, 31 (2021). https://doi.org/10.1007/s10291-020-01078-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10291-020-01078-8