Abstract
China has recently established the primary constellation of BeiDou-3 global navigation satellite system (BDS-3). It is necessary to conduct a comprehensive assessment about its performance. The signal quality, ambiguity resolution efficiency and real-time kinematic (RTK) performance are assessed based on the datasets collected with two Trimble Alloy receivers that can track all open signals of BDS-3. Then, the precise point positioning (PPP) using combined BDS-2 and BDS-3 measurements is compared with the PPP using BDS-2 only, where the precise satellite orbits and clocks are determined using 116 globally distributed monitor stations. The results show that the signal quality of BDS-3 is generally better than that of BDS-2. Also, the ambiguity resolution efficiency of RTK is improved by incorporating the BDS-3 measurements with success rate improving from 88.5 to 91.4%. Regarding PPP, the convergence time is shortened from about an hour to less than half an hour, while the positioning accuracy is also improved significantly.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
CSNO (China Satellite Navigation Office) (2017) BeiDou navigation satellite system signal in space interface control document open service signal B1C, B2a and B3I (version 1.0)
CSNO (China Satellite Navigation Office) (2018a) Development of the BeiDou navigation satellite system (version 3.0)
CSNO (China Satellite Navigation Office) (2018b) BeiDou navigation satellite system open service performance standard (version 2.0)
CSNO (China Satellite Navigation Office) (2019) BeiDou navigation satellite system signal in space interface control document open service signal B1I (version 3.0)
Dai L, Eslinger D, Sharpe T (2007) Innovative algorithms to improve long range RTK reliability and availability. In: Proceedings of ION NTM 2007, Institute of Navigation, San Diego, CA, Jan 22–24, pp 860–872
de Bakker P, Marel H, Tiberius C (2009) Geometry-free undifferenced, single and double differenced analysis of single frequency GPS, EGNOS and GIOVE-A/B measurements. GPS Solut 13(4):305–314
Ge H, Li B, Ge M, Shen Y, Schuh H (2017) Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers. J Geod 91(12):1447–1460
Grelier T, Ghion A, Dantepal J, Ries L, DeLatour A, Issler JL, Avila-Rodriguez J, Wallner S, Hein G (2007) Compass signal structure and first measurements. In: Proceedings of ION GNSS 2007, Institute of Navigation, Fort Worth, Texas, USA, Sept 25–28, pp 3015–3024
Hauschild A, Montenbruck O, Sleewaegen J, Huisman L, Teunissen PJG (2012) Characterization of compass M-1 signals. GPS Solut 16(1):117–126
He H, Li J, Yang Y, Xu J, Guo H, Wang A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solut 18(3):393–403
Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York
Li B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis. J Geod 90(7):593–610
Li B, Feng Y, Gao W, Li Z (2015) Real-time kinematic positioning over long baselines using triple-frequency BeiDou signals. IEEE Trans Aerosp Electron Syst 51(4):3254–3269
Li Y, Gao Y, Shi J (2016) Improved PPP ambiguity resolution by COES FCB estimation. J Geod 90(5):437–450
Li B, Li Z, Zhang Z, Tan Y (2017) ERTK: extra-wide-lane RTK of triple-frequency GNSS signals. J Geod 91(9):1031–1047
Li B, Zhang Z, Zang N, Wang S (2019) High-precision GNSS ocean positioning with BeiDou short-message communication. J Geod 93(2):125–139
Luo X, Mayer M, Heck B (2009) Improving the stochastic model of GNSS observations by means of SNR-based weighting. In: Sideris MG (ed) Observing our changing earth. International Association of Geodesy Symposia, vol 133. Springer, Berlin, pp 725–734
Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2012) Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut 16(3):303–313
Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222
Nie Z, Gao Y, Wang Z, Ji S, Yang H (2018) An approach to GPS clock prediction for real-time PPP during outages of RTS stream. GPS Solut 22(1):14
Pan L, Zhang X, Li X, Liu J, Li X (2017) Characteristics of inter-frequency clock bias for Block IIF satellites and its effect on triple-frequency GPS precise point positioning. GPS Solut 21(2):811–822
Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y (2012) Precise orbit determination of Beidou Satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086
Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119
Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of compass GEO and IGSO satellites. J Geod 87(6):515–525
Tan B, Yuan Y, Wen M, Ning Y, Liu X (2016) Initial results of the precise orbit determination for the new-generation BeiDou satellites (BeiDou-3) based on the iGMAS Network. ISPRS Int J Geo-Inf 5(11):196
Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82
Tian Y, Sui L, Xiao G, Zhao D, Tian Y (2019) Analysis of Galileo/BDS/GPS signals and RTK performance. GPS Solut 23(2):37
Wanninger L, Beer S (2015) BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solut 19(4):639–648
Woo KT (2000) Optimum semicodeless carrier-phase tracking of L2. Navigation 47(2):82–99
Wu Z, Zhou S, Hu X, Liu L, Shuai T, Xie Y, Tang C, Pan J, Zhu L, Chang Z (2018) Performance of the BDS3 experimental satellite passive hydrogen maser. GPS Solut 22(2):43
Xie X, Geng T, Zhao Q, Liu J, Wang B (2017) Performance of BDS-3: measurement quality analysis, precise orbit and clock determination. Sensors 17(6):1233
Yan X, Huang G, Zhang Q, Liu C, Wang L, Qin Z (2019) Early analysis of precise orbit and clock offset determination for the satellites of the global BeiDou-3 system. Adv Space Res 63(3):1270–1279
Yang Y, Li J, Wang A, Xu J, He H, Guo H, Shen J, Dai X (2014) Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci China Earth Sci 57(1):144–152
Yang Y, Xu Y, Li J, Yang C (2018) Progress and performance evaluation of BeiDou global navigation satellite system: data analysis based on BDS-3 demonstration system. Sci China Earth Sci 61(5):614–624
Yang Y, Gao W, Guo S, Mao Y, Yang Y (2019) Introduction to BeiDou-3 navigation satellite system. Navigation 66(1):7–18
Zhang X, Wu M, Liu W, Li X, Yu S, Lu C, Wickert J (2017a) Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals. J Geod 91(1):1225–1240
Zhang Z, Li B, Shen Y, Yang L (2017b) A noise analysis method for GNSS signals of a standalone receiver. Acta Geod Geophys 52(3):301–316
Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486
Zhou R, Hu Z, Zhao Q, Li P, Wang W, He C, Cai C, Pan Z (2018) Elevation-dependent pseudorange variation characteristics analysis for the new-generation BeiDou satellite navigation system. GPS Solut 22(3):60
Acknowledgements
This study is sponsored by the National Natural Science Foundation of China (41874030, 41622401 and 41574023 and 41730102), the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee (18511101801), the National Key Research and Development Program of China (2016YFB0501802, 2017YFA0603102) and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Z., Li, B., Nie, L. et al. Initial assessment of BeiDou-3 global navigation satellite system: signal quality, RTK and PPP. GPS Solut 23, 111 (2019). https://doi.org/10.1007/s10291-019-0905-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10291-019-0905-4