Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A successive linear programming algorithm with non-linear time series for the reservoir management problem

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

This paper proposes a multi-stage stochastic programming formulation based on affine decision rules for the reservoir management problem. Our approach seeks to find a release schedule that balances flood control and power generation objectives while considering realistic operating conditions as well as variable water head. To deal with the non-convexity introduced by the variable water head, we implement a simple, yet effective, successive linear programming algorithm. We also introduce a novel non-linear inflow representation that captures serial correlation of arbitrary order. We test our method on a small real river system and discuss policy implications. Our results namely show that our method can decrease flood risk and increase production compared to the historical decisions, albeit at the cost of reduced final storages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Although the intersections of the two sets is not a polyhedron, it is can be represented by a polyhedron using the decomposition \(\varrho _t= \varrho _t^+ - \varrho _t^-\) and \(|\varrho _t| = \varrho _t^+ + \varrho _t^-\) with \(\varrho _t^+, \varrho _t^- \geqslant 0, \, \forall t\).

References

  • Bana e Costa CA, Vansnick JC (1997) A theoretical framework for measuring attractiveness by a categorical based evaluation technique (MACBETH). Springer, New York

    Book  Google Scholar 

  • Ben-Tal A, Goryashko E, Guslitzer A, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Program 99:351–378

    Article  Google Scholar 

  • Bezerra B, Veiga Á, Barroso LA, Pereira M (2017) Stochastic long-term hydrothermal scheduling with parameter uncertainty in autoregressive streamflow models. IEEE Trans Power Syst 32(2):999–1006

    Google Scholar 

  • Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    Google Scholar 

  • Borghetti A, D’Ambrosio C, Lodi A, Martello S (2008) An milp approach for short-term hydro scheduling and unit commitment with head-dependent reservoir. IEEE Trans Power Syst 23(3):1115–1124

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc 2:211–252

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  • Braaten SV, Gjonnes O, Hjertvik K, Fleten SE (2016) Linear decision rules for seasonal hydropower planning: modelling considerations. Energy Procedia 87:28–35. 5th International Workshop on Hydro Scheduling in Competitive Electricity Markets

  • Brockwell PJ, Davis RA (1987) Time series: theory and methods. Springer, New York

    Book  Google Scholar 

  • Carpentier PL, Gendreau M, Bastin F (2013) Long-term management of a hydroelectric multireservoir system under uncertainty using the progressive hedging algorithm. Water Resour Res 49:2812–2827

    Article  Google Scholar 

  • Castelletti A, Pianosi F, Soncini-Sessa R (2008) Water reservoir control under economic, social and environmental constraints. Automatica 44(6):1595–1607

    Article  Google Scholar 

  • Castelletti A, Galetti S, Restelli M, Soncini-Sessa R (2010) Tree-based reinforcement learning for optimal water reservoir operation. Water Resour Res 46(W09):507

    Google Scholar 

  • Cerisola S, Latorre JM, Ramos A (2012) Stochastic dual dynamic programming applied to nonconvex hydrothermal models. Eur J Oper Res 218(3):687–697. https://doi.org/10.1016/j.ejor.2011.11.040

    Article  Google Scholar 

  • De Ladurantaye D, Gendreau M, Potvin JY (2007) Strategic bidding for price-taker hydroelectricity producers. IEEE Trans Power Syst 22(4):2187–2203

    Article  Google Scholar 

  • De Ladurantaye D, Gendreau M, Potvin JY (2009) Optimizing profits from hydroelectricity production. Comput Oper Res 36:499–529

    Article  Google Scholar 

  • Diniz AL, Maceira MEP (2000) A four-dimensional model of hydro generation for the shortterm hydrothermal dispatch problem considering head and spillage effects. IEEE Trans Power Syst 23(3):1298–1308

    Article  Google Scholar 

  • Diniz AL, Souza TM (2014) Short-term hydrothermal dispatch with river-level and routing constraints. IEEE Trans Power Syst 29(5):2427–2435

    Article  Google Scholar 

  • dos Santos TN, Diniz AL (2009) A new multiperiod stage definition for the multistage benders decomposition approach applied to hydrothermal scheduling. IEEE Trans Power Syst 24(3):1383–1392

    Article  Google Scholar 

  • Egging R, Fleten SE, Grønvik I, Hadziomerovic A, Ingvoldstad N (2017) Linear decision rules for hydropower scheduling under uncertainty. IEEE Trans Power Syst 32(1):103–113

    Article  Google Scholar 

  • Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, New York

    Google Scholar 

  • Gauvin C, Delage E, Gendreau M (2017) Decision rule approximations for the risk averse reservoir management problem. Eur J Oper Res 261:317–336

    Article  Google Scholar 

  • Gauvin C, Delage E, Gendreau M (2016) A stochastic program with tractable time series and affine decision rules for the reservoir management problem. Technical report. G-2016-24, Les cahiers du GERAD

  • Gauvin C, Delage E, Gendreau M (2017) A successive linear programming algorithm with non-linear time series for the reservoir management problem. Technical report

  • Gjelsvik A, Mo B, Haugstad A (2010) Long- and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming. Springer Berlin Heidelberg, Berlin, pp 33–55. https://doi.org/10.1007/978-3-642-02493-1_2

    Google Scholar 

  • Hamann A, Hug G, Rosinski S (2017) Real-time optimization of the mid-columbia hydropower system. IEEE Trans Power Syst 32(1):157–165

    Article  Google Scholar 

  • Klöckl B, Papaefthymiou G (2010) Multivariate time series models for studies on stochastic generators in power systems. Electr Power Syst Res 80:265–276

  • Kuhn D, Wiesemann W, Georghiou A (2011) Primal and dual linear decision rules in stochastic and robust optimization. Math Program Ser A 130:177–209

    Article  Google Scholar 

  • Labadie J (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manag 130:93–111

    Article  Google Scholar 

  • Li X, Guo S, Liu P, Chen G (2010) Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. J Hydrol 391(1):124–132

    Article  Google Scholar 

  • Lohmann T, Hering AS, Rebennack S (2016) Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling. Eur J Oper Res 255(1):243–258. https://doi.org/10.1016/j.ejor.2016.05.011

    Article  Google Scholar 

  • Lorca Á, Sun XA, Litvinov E, Zheng T (2016) Multistage adaptive robust optimization for the unit commitment problem. Oper Res 64(1):32–51. https://doi.org/10.1287/opre.2015.1456

    Article  Google Scholar 

  • Lorca A, Sun XA (2015) Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans Power Syst 30:1702–1713

    Article  Google Scholar 

  • Maceira M, Damázio J (2004) The use of par(p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the Brazilian hydropower system. In: 8th International conference on probabilistic methods applied to power systems, Iowa State University, pp 397–402

  • Maceira M, Duarte V, Penna D, Moraes L, Melo A (2008) Ten years of application of stochastic dual dynamic programming in official and agent studies in brazil—description of the newave program. In: 16th PSCC, Glasgow, Scotland

  • Needham JT, Watkins DW, Lund JR, Nanda SK (2000) Linear programming for flood control in the iowa and des moines rivers. J Water Resour Plan Manag 126(3):118–127

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer Series in Operations Research, 2nd edn. Springer, New York

    Google Scholar 

  • Pan L, Housh M, Liu P, Cai X, Chen X (2015) Robust stochastic optimization for reservoir operation. Water Resour Res 51(1):409–429. https://doi.org/10.1002/2014WR015380

    Article  Google Scholar 

  • Phillpott A, Wahid F, Bonnans F (2016) Midas: a mixed integer dynamic approximation scheme. Technical report. http://www.optimization-online.org/DB_FILE/2016/05/5431.pdf

  • Pianosi F, Soncini-Sessa R (2009) Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model. Water Resour Res 45(10):1–12. https://doi.org/10.1029/2008WR007335.W10430

    Article  Google Scholar 

  • Poorsepahy-Samian H, Espanmanesh V, Zahraie B (2016) Improved inflow modeling in stochastic dual dynamic programming. J Water Resour Plan Manag 142(12):04016065

    Article  Google Scholar 

  • ReVelle CS, Kirby W (1970) Linear decision rule in reservoir management and design, 2, performance optimization. Water Resour Res 6:1033–1044

    Article  Google Scholar 

  • Séguin S, Côté P, Audet C (2016) Self-scheduling short-term unit commitment and loading problem. IEEE Trans Power Syst 31(1):133–142

    Article  Google Scholar 

  • Séguin S, Côté P, Audet C (2014) Short-term unit commitment and loading problem. Tech. rep, Les cahiers du GERAD

    Google Scholar 

  • Shapiro A (2011) Analysis of stochastic dual dynamic programming method. Eur J Oper Res 209:63–72

    Article  Google Scholar 

  • Shapiro A, Tekaya W, da Costa JP, Soares MP (2013) Risk neutral and risk averse stochastic dual dynamic programming method. Eur J Oper Res 224(2):375–391. https://doi.org/10.1016/j.ejor.2012.08.022

    Article  Google Scholar 

  • Shapiro A, Tekaya W, da Costa JP, Soares MP (2012) Final report for technical cooperation between georgia institute of technology and ons - operador nacional do sistema eletrico. Tech. rep., Georgia Institute of Technology and Operador Nacional do Sistema Eletrico

  • Stedinger JR, Faber BA (2001) Reservoir optimization using sampling sdp with ensemble streamflow prediction (esp) forecast. J Hydrol 249:113–133

    Article  Google Scholar 

  • Steeger G, Rebennack S (2017) Dynamic convexification within nested benders decomposition using lagrangian relaxation: an application to the strategic bidding problem. Eur J Oper Res 257(2):669–686

    Article  Google Scholar 

  • Thome F, Pereira M, Granville S, Fampa M (2013) Non-convexities representation on hydrothermal operation planning using sddp (unpublished technical report)

  • Tilmant A, Kelman R (2007) A stochastic approach to analyze trade-offs and risk associated with large-scale water resources systems. Water Resour Res 43(W06):425

    Google Scholar 

  • Tsay RS (2005) Analysis of financial time series, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Turgeon A (2005) Solving a stochastic reservoir management problem with multilag autocorrelated inflows. Water Resour Res 41(W12):414

    Google Scholar 

  • Turgeon A, Charbonneau R (1998) An aggregation-disaggregation approach to long-term reservoir management. Water Resour Res 34:3585–3594

    Article  Google Scholar 

  • Wei CC, Hsu NS (2009) Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system. J Hydrol 365(3):213–224

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Grégory Émiel, Louis Delorme, Pierre-Marc Rondeau, Sara Séguin, Jasson Pina and Pierre-Luc Carpentier. This research was supported by NSERC/Hydro-Québec through the Industrial Research Chair on the Stochastic Optimization of Electricity Generation and Grant 386416-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gauvin.

Appendices

Appendix

1.1 Counterexample showing that \(\varXi _t\) is generally non-convex

We show that in general, \(\varXi _t\) is not convex for an arbitrary \(t \in {\mathbb {T}}\). Consider the following instance:

$$\begin{aligned}&V = \left( \begin{array}{cc} 1 &{} 0 \\ -1 &{} 1 \end{array} \right) \\&v_t=u_t=(0,0)^{\top } \\&P\, = \{ \varrho \in {\mathbb {R}}^L : -1 \leqslant \varrho _l \leqslant 1, \forall l =1,\ldots ,L; \, \sum _{i=1}^L |\varrho _i| \leqslant \sqrt{L}\} \\&L=2. \end{aligned}$$

Figure 10 displays \(\varXi _t=\{ \xi \in {\mathbb {R}}^L : \exists \varrho \in P, \xi _l = \exp ( V_l^{\top } \varrho ), \forall l=1,\ldots ,L\}\) and illustrates that \(\varXi _t\) is in general not convex.

Fig. 10
figure 10

Non convex uncertainty set

For a slightly more formal demonstration, it is possible to show that given the two points \({\hat{\varrho }}_1=(1-\sqrt{2},1)^{\top } \in P\) and \({\hat{\varrho }}_2=(\sqrt{2}-1,1)^{\top }\in P\) illustrated in Fig. 10 as well as \(\lambda =\frac{1}{2}\), there exists no \( \varrho \in P \) such that:

$$\begin{aligned} \lambda&\left( \begin{array}{c} e^{V_1^{\top }{\hat{\varrho }}_1} \\ e^{V_2^{\top }{\hat{\varrho }}_1} \end{array} \right) + (1-\lambda ) \left( \begin{array}{c} e^{V_1^{\top }{\hat{\varrho }}_2} \\ e^{V_2^{\top }{\hat{\varrho }}_2} \end{array} \right) = \left( \begin{array}{c} e^{V_1^{\top }\varrho } \\ e^{V_2^{\top }\varrho } \end{array} \right) . \end{aligned}$$
(34)

Equivalently, we can show that \(\forall \varrho \in P\),

$$\begin{aligned} \left\| \left( \begin{array}{c} e^{V_1^{\top }\varrho } \\ e^{V_2^{\top }\varrho } \end{array} \right) - \lambda \left( \begin{array}{c} e^{V_1^{\top }{\hat{\varrho }}_1} \\ e^{V_2^{\top }{\hat{\varrho }}_1} \end{array} \right) + (1-\lambda ) \left( \begin{array}{c} e^{V_1^{\top }{\hat{\varrho }}_2} \\ e^{V_2^{\top }{\hat{\varrho }}_2} \end{array} \right) \right\| _{\infty } > 0. \end{aligned}$$

This can be shown by solving the following linear program and observing that its optimal value is strictly larger than 0:

$$\begin{aligned}&\quad \displaystyle \mathop {{{\mathrm{min}}}}\limits _{\varrho ^+\geqslant 0,\varrho ^-\geqslant 0,t \geqslant 0} \quad \; \; t \\&\quad \text{ s. } \text{ t. } \quad \quad \sum _{i=1}^2 (\varrho _i^+ + \varrho _i^- ) \leqslant \sqrt{2} \\&\quad \quad \quad \quad \, \quad \varrho _{i}^+ + \varrho _i^- \leqslant 1, \quad \forall i =1,2 \\&\quad \quad \quad \quad \quad \, V_i^{\top } (\varrho ^+ - \varrho ^-) -l_{i}^{\lambda } \leqslant t, \quad i=1,2 \\&\quad \quad \quad \quad \quad \, l_{i}^{\lambda } - V_i^{\top } (\varrho ^+ - \varrho ^-) \leqslant t, \quad i=1,2, \end{aligned}$$

where \(l_{i}^{\lambda } = ln(\lambda e^{V_i^{\top }{\hat{\varrho }}_1 } + (1-\lambda ) e^{V_i^{\top }{\hat{\varrho }}_2} )\) is a known constant.

First order Taylor approximation of the composite risk

We first fix \({\text {E} \left[ {\mathcal {P}}_{i,t+l}(\xi ) {\mathcal {H}}_{i,t+l}(\xi ) |\mathcal {G}_{t-1} \right] } \equiv F_{i,t+l}({\mathcal {H}}_{i,t+l},{\mathcal {P}}_{i,t+l}) \) where \({\mathcal {H}}_{i,t+l}=({\mathcal {H}}^0_{i,t+l},{\mathcal {H}}^{t+1}_{i,t+l},\ldots ,{\mathcal {H}}^{t+L-1}_{i,t+l})^{\top } \in {\mathbb {R}}^L\) and \({\mathcal {P}}_{i,t+l}=({\mathcal {P}}^0_{i,t+l},{\mathcal {P}}^{t+1}_{i,t+l},\ldots ,{\mathcal {P}}^{t+L-1}_{i,t+l})^{\top }\in {\mathbb {R}}^L\). Given the point \((\hat{{\mathcal {H}}}_{i,t+l}^{\top } ,\hat{{\mathcal {P}}}_{i,t+l}^{\top } )^{\top } \in {\mathbb {R}}^{2L }\), we then obtain:

$$\begin{aligned}&F_{i,t+l}({\mathcal {H}}_{i,t+l},{\mathcal {P}}_{i,t+l}) \approx F_{i,t+l}(\hat{{\mathcal {H}}}_{i,t+l},\hat{{\mathcal {P}}}_{i,t+l}) \nonumber \\&\quad + \hat{{\mathcal {H}}}_{i,t+l}^0 ({{\mathcal {P}}}_{i,t+l}^0-\hat{{\mathcal {P}}}_{i,t+l}^0 ) \nonumber \\&\quad + \sum _{k=0}^{L-1} \hat{{\mathcal {H}}}_{i,t+l}^0 ({{\mathcal {P}}}_{i,t+l}^{t+k}-\hat{{\mathcal {P}}}_{i,t+l}^{t+k} )\text {E} \left[ \xi _{t+k} |\mathcal {G}_{t-1} \right] \nonumber \\&\quad + \sum _{k=0}^{L-1} \hat{{\mathcal {H}}}_{i,t+l}^{k} ({{\mathcal {P}}}_{i,t+l}^0-\hat{{\mathcal {P}}}_{i,t+l}^{0}) \text {E} \left[ \xi _{t+k} |\mathcal {G}_{t-1} \right] \nonumber \\&\quad + \sum _{m=0}^{L-1} \sum _{k=0}^{L-1} \hat{{\mathcal {H}}}_{i,t+l}^{t+m} ({{\mathcal {P}}}_{i,t+l}^{t+k}-\hat{{\mathcal {P}}}_{i,t+l}^{t+k} ) \text {E} \left[ \xi _{t+m} \xi _{t+k} |\mathcal {G}_{t-1} \right] \nonumber \\&\quad + \hat{{\mathcal {P}}}_{i,t+l}^0 ({{\mathcal {H}}}_{i,t+l}^0-\hat{{\mathcal {H}}}_{i,t+l}^0 )\nonumber \\&\quad + \sum _{k=0}^{L-1} \hat{{\mathcal {P}}}_{i,t+l}^0 ({{\mathcal {H}}}_{i,t+l}^{t+k}-\hat{{\mathcal {H}}}_{i,t+l}^{t+k} )\text {E} \left[ \xi _{t+k} |\mathcal {G}_{t-1} \right] \nonumber \\&\quad + \sum _{k=0}^{L-1} \hat{{\mathcal {P}}}_{i,t+l}^{k} ({{\mathcal {H}}}_{i,t+l}^{0}-\hat{{\mathcal {H}}}_{i,t+l}^{0} ) \text {E} \left[ \xi _{t+k} |\mathcal {G}_{t-1} \right] \nonumber \\&\quad + \sum _{m=0}^{L-1} \sum _{k=0}^{L-1} \hat{{\mathcal {P}}}_{i,t+l}^{t+m} ({{\mathcal {H}}}_{i,t+l}^{t+k}-\hat{{\mathcal {H}}}_{i,t+l}^{t+k} ) \text {E} \left[ \xi _{t+m} \xi _{t+k} |\mathcal {G}_{t-1} \right] . \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauvin, C., Delage, E. & Gendreau, M. A successive linear programming algorithm with non-linear time series for the reservoir management problem. Comput Manag Sci 15, 55–86 (2018). https://doi.org/10.1007/s10287-017-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-017-0295-4

Keywords

Navigation