Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A copula-based heuristic for scenario generation

  • Original paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

An Erratum to this article was published on 25 October 2014

Abstract

This paper presents a new heuristic for generating scenarios for two-stage stochastic programs. The method uses copulas to describe the dependence between the marginal distributions, instead of the more common correlations. The heuristic is then tested on a simple portfolio-selection model, and compared to two other scenario-generation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For some available codes, see, for example, http://www.mathfinance.cn/tags/copula.

  2. This assumes that we match all the possible pairs; more generally, we can replace \({n}^2\) by the number of matched bivariate copulas. For example, if we specify copulas only for pairs of margins \((i,j)\) with \(|i-j|\le k\), for some fixed \(k\), the heuristic becomes \({\fancyscript{O}\!\left( {n}\,{S}^2\right) }\).

  3. Except for distributions with limited support, where such a correction might give infeasible values.

References

  • Bouyé E, Durrleman V, Nikeghbali A, Riboulet G, Roncalli T (2000) Copulas for finance: a reading guide and some applications. Working paper, Crédit Lyonnais, Paris, 2000. Available at SSRN: http://ssrn.com/abstract=1032533

  • Dupačová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Annals Oper Res 100(1–4):25–53. doi:10.1023/A:1019206915174

    Article  Google Scholar 

  • Forrest J, Lougee-Heimer R (2005) CBC user guide. In: Greenberg HJ, Smith JC (eds) Tutorials in Operations research, INFORMS, chapter \(10\), pp 257–277

  • Høyland K, Kaut M, Wallace SW (2003) A heuristic for moment-matching scenario generation. Comput Optim Appl 24(2–3):169–185. doi:10.1023/A:1021853807313

    Article  Google Scholar 

  • Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Financial Econ 16(10):717–729. doi:10.1080/09603100500426515

    Article  Google Scholar 

  • Hultberg TH (2007) FLOPC++ an algebraic modeling language embedded in C++. In: Waldmann K-H, Stocker UM (eds) Proceedings operations research, vol 2006. Springer, Heidelberg, pp 187–190. doi:10.1007/978-3-540-69995-8_31

  • Kaut M, Wallace SW (2007) Evaluation of scenario-generation methods for stochastic programming. Pac J Optim 3(2):257–271

    Google Scholar 

  • Kaut M, Wallace SW (2011) Shape-based scenario generation using copulas. Comput Manag Sci 8(1–2):181–199. doi:10.1007/s10287-009-0110-y

    Google Scholar 

  • Longin F, Solnik B (2001) Extreme correlation of international equity markets. J Finance 56(2):649–676

    Article  Google Scholar 

  • Makhorin A (2013a) GNU linear programming kit—reference manual, version 4.48. Free Software Foundation, Inc, Boston

  • Makhorin A (2013b) GNU linear programming kit—modeling language GNU mathProg, version 4.48. Free Software Foundation, Inc, Boston

  • Nelsen RB (1998) An introduction to copulas. Springer, New York

    Google Scholar 

  • Patton AJ (2004) On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. J Financial Econ 2(1):130–168. doi:10.1093/jjfinec/nbh006

    Article  Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41

    Google Scholar 

  • Romano C (2002) Calibrating and simulating copula functions: an application to the italian stock market. Working paper 12, Centro Interdipartimale sul Diritto e l’Economia dei Mercati

  • Sklar A (1996) Random variables, distribution functions, and copulas-a personal look backward and forward. In: Rüschendorff L, Schweizer B, Taylor M (eds) Distributions with fixed marginals and related topics, vol 28 of Lecture Notes—monograph, pp 1–14. Institute of Mathematical Statistics, Hayward. URL: http://www.jstor.org/stable/4355880

  • Vaagen H, Wallace SW (2008) Product variety arising from hedging in the fashion supply chains. Int J Prod Econ 114(2):431–455. doi:10.1016/j.ijpe.2007.11.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaut, M. A copula-based heuristic for scenario generation. Comput Manag Sci 11, 503–516 (2014). https://doi.org/10.1007/s10287-013-0184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-013-0184-4

Keywords

Navigation