Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Prediction of Radiation-Related Dental Caries Through PyRadiomics Features and Artificial Neural Network on Panoramic Radiography

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The prediction and detection of radiation-related caries (RRC) are crucial to manage the side effects of the head and the neck cancer (HNC) radiotherapy (RT). Despite the demands for the prediction of RRC, no study proposes and evaluates a prediction method. This study introduces a method based on artificial intelligence neural network to predict and detect either regular caries or RRC in HNC patients under RT using features extracted from panoramic radiograph. We selected fifteen HNC patients (13 men and 2 women) to analyze, retrospectively, their panoramic dental images, including 420 teeth. Two dentists manually labeled the teeth to separate healthy and teeth with either type caries. They also labeled the teeth by resistant and vulnerable, as predictive labels telling about RT aftermath caries. We extracted 105 statistical/morphological image features of the teeth using PyRadiomics. Then, we used an artificial neural network classifier (ANN), firstly, to select the best features (using maximum weights) and then label the teeth: in caries and non-caries while detecting RRC, and resistant and vulnerable while predicting RRC. To evaluate the method, we calculated the confusion matrix, receiver operating characteristic (ROC), and area under curve (AUC), as well as a comparison with recent methods. The proposed method showed a sensibility to detect RRC of 98.8% (AUC = 0.9869) and to predict RRC achieved 99.2% (AUC = 0.9886). The proposed method to predict and detect RRC using neural network and PyRadiomics features showed a reliable accuracy able to perform before starting RT to decrease the side effects on susceptible teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians, 68 (2018) 394–424.https://doi.org/10.3322/caac.21492

  2. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020, CA: A Cancer Journal for Clinicians, 70 (2020) 7–30.https://doi.org/10.3322/caac.21590

  3. P. Blanchard, B. Baujat, V. Holostenco, A. Bourredjem, C. Baey, J. Bourhis, J.-P. Pignon, Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site, Radiotherapy and Oncology, 100 (2011) 33–40.https://doi.org/10.1016/j.radonc.2011.05.036

  4. A. Forastiere, W. Koch, A. Trotti, D. Sidransky, Head and neck cancer, New England Journal of Medicine, 345 (2001) 1890-1900.https://doi.org/10.1056/NEJMra001375

    Article  CAS  Google Scholar 

  5. J.B. Epstein, R.V. Kish, L. Hallajian, J. Sciubba, Head and neck, oral, and oropharyngeal cancer: a review of medicolegal cases, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 119 (2015) 177–186.https://doi.org/10.1016/j.oooo.2014.10.002

  6. M. Cardoso, M. Min, M. Jameson, S. Tang, C. Rumley, A. Fowler, V. Estall, E. Pogson, L. Holloway, D. Forstner, Evaluating diffusion-weighted magnetic resonance imaging for target volume delineation in head and neck radiotherapy, Journal of medical imaging and radiation oncology, 63 (2019) 399-407.https://doi.org/10.1111/1754-9485.12866

    Article  PubMed  Google Scholar 

  7. V. Saloura, A. Langerman, S. Rudra, R. Chin, E.E.W. Cohen, Multidisciplinary care of the patient with head and neck cancer, Surgical Oncology Clinics of North America, 22 (2013) 179–215.https://doi.org/10.1016/j.soc.2012.12.001

  8. F.M.D. Santos, G.A. Viani, J.F. Pavoni, Evaluation of survival of patients with locally advanced head and neck cancer treated in a single center, Brazilian Journal of Otorhinolaryngology, (2019).https://doi.org/10.1016/j.bjorl.2019.06.006

  9. T. Du, J. Xiao, Z. Qiu, K. Wu, The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: a systematic review and meta-analysis, PLOS ONE, 14 (2019) e0219611.https://doi.org/10.1371/journal.pone.0219611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H.Y. Sroussi, J.B. Epstein, R.-J. Bensadoun, D.P. Saunders, R.V. Lalla, C.A. Migliorati, N. Heaivilin, Z.S. Zumsteg, Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis, Cancer Medicine, 6 (2017) 2918-2931.https://doi.org/10.1002/cam4.1221

    Article  PubMed  PubMed Central  Google Scholar 

  11. J. Deng, L. Jackson, J.B. Epstein, C.A. Migliorati, B.A. Murphy, Dental demineralization and caries in patients with head and neck cancer, Oral Oncology, 51 (2015) 824–831.https://doi.org/10.1016/j.oraloncology.2015.06.009

  12. C.H.L. Hong, J.J. Napeñas, B.D. Hodgson, M.A. Stokman, V. Mathers-Stauffer, L.S. Elting, F.K.L. Spijkervet, M.T. Brennan, O.C.S.G.M.-n.A.o.S.C.i.C.I.S.o.O.O. Dental Disease Section, A systematic review of dental disease in patients undergoing cancer therapy, Supportive Care in Cancer, 18 (2010) 1007–1021.https://doi.org/10.1007/s00520-010-0873-2

  13. M.P. Walker, B. Wichman, A.-L. Cheng, J. Coster, K.B. Williams, Impact of radiotherapy dose on dentition breakdown in head and neck cancer patients, Pract Radiat Oncol, 1 (2011) 142-148.https://doi.org/10.1016/j.prro.2011.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  14. A.R.S. Silva, F.A. Alves, A. Antunes, M.F. Goes, M.A. Lopes, Patterns of demineralization and dentin reactions in radiation-related caries, Caries Research, 43 (2009) 43-49.https://doi.org/10.1159/000192799

    Article  CAS  PubMed  Google Scholar 

  15. F. Abesi, A. Mirshekar, E. Moudi, M. Seyedmajidi, S. Haghanifar, N. Haghighat, A. Bijani, Diagnostic accuracy of digital and conventional radiography in the detection of non-cavitated approximal dental caries, Iran J Radiol, 9 (2012) 17-21.https://doi.org/10.5812/iranjradiol.6747

    Article  PubMed  PubMed Central  Google Scholar 

  16. S.C. White, Caries detection with xeroradiographs: the influence of observer experience, Oral Surgery, Oral Medicine, Oral Pathology, 64 (1987) 118–122.https://doi.org/10.1016/0030-4220(87)90126-5

  17. J. Oliveira, H. Proença, Caries Detection in Panoramic Dental X-ray Images, in: J.M.R.S. Tavares, R.M.N. Jorge (Eds.) Computational Vision and Medical Image Processing: Recent Trends, Springer Netherlands, Dordrecht, 2011, pp. 175–190.https://doi.org/10.1007/978-94-007-0011-6_10

  18. J.W. Choi, Assessment of panoramic radiography as a national oral examination tool: review of the literature, Imaging Sci Dent, 41 (2011) 1-6

    Article  Google Scholar 

  19. B.M. Gray, A. Mol, A. Zandona, D. Tyndall, The effect of image enhancements and dual observers on proximal caries detection, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 123 (2017) e133-e139.https://doi.org/10.1016/j.oooo.2017.01.004

  20. E. Alpaydin, Introduction to machine learning, 2nd edn. Adaptive computation and machine learning, The MIT Press (February 2010), 2010,

    Google Scholar 

  21. A. Hizukuri, R. Nakayama, M. Nara, M. Suzuki, K. Namba, Computer-aided diagnosis scheme for distinguishing between benign and malignant masses on breast DCE-MRI images using deep convolutional neural network with Bayesian optimization, Journal of Digital Imaging, (2020).https://doi.org/10.1007/s10278-020-00394-2

    Article  PubMed  Google Scholar 

  22. C. Liu, M. Pang, Extracting lungs from CT images via deep convolutional neural network based segmentation and two-pass contour refinement, Journal of Digital Imaging, (2020).https://doi.org/10.1007/s10278-020-00388-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. A.B. Tufail, Y.K. Ma, Q.N. Zhang, Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning, Journal of Digital Imaging, 33 (2020) 1073-1090.https://doi.org/10.1007/s10278-019-00265-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. J.J. Hwang, Y.H. Jung, B.H. Cho, M.S. Heo, An overview of deep learning in the field of dentistry, Imaging Sci Dent, 49 (2019) 1-7.https://doi.org/10.5624/isd.2019.49.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  25. A.G. Cantu, S. Gehrung, J. Krois, A. Chaurasia, J.G. Rossi, R. Gaudin, K. Elhennawy, F. Schwendicke, Detecting caries lesions of different radiographic extension on bitewings using deep learning, Journal of Dentistry, 100 (2020) 103425.https://doi.org/10.1016/j.jdent.2020.103425

  26. A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, 3D Slicer as an image computing platform for the Quantitative Imaging Network, Magnetic resonance imaging, 30 (2012) 1323-1341

    Article  Google Scholar 

  27. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, G. Louppe, P. Prettenhofer, R. Weiss, Scikit-learn: machine learning in python. arXiv, arXiv preprint arXiv:1201.0490, (2012)

  28. H.B. Demuth, M.H. Beale, O. De Jess, M.T. Hagan, Neural network design, Martin Hagan2014

  29. I. Witten, E. Frank, M. Hall, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann2011

  30. F. Schoonjans, MedCalc, 2020.https://www.medcalc.org/contact.php

  31. J.H. Lee, D.-H. Kim, S.N. Jeong, S.H. Choi, Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm, Journal of Dentistry, 77 (2018) 106–111.https://doi.org/10.1016/j.jdent.2018.07.015

  32. S. Patil, V. Kulkarni, A. Bhise, Algorithmic analysis for dental caries detection using an adaptive neural network architecture, Heliyon, 5 (2019) e01579.https://doi.org/10.1016/j.heliyon.2019.e01579

  33. M. Hashem, A.E. Youssef, Teeth infection and fatigue prediction using optimized neural networks and big data analytic tool, Cluster Computing, 23 (2020) 1669-1682.https://doi.org/10.1007/s10586-020-03112-3

    Article  Google Scholar 

  34. F. Schwendicke, K. Elhennawy, S. Paris, P. Friebertshäuser, J. Krois, Deep learning for caries lesion detection in near-infrared light transillumination images: a pilot study, J Dent, 92 (2020) 103260.https://doi.org/10.1016/j.jdent.2019.103260

    Article  CAS  Google Scholar 

  35. N.R. Palmier, A.C.P. Ribeiro, J.M. Fonsêca, J.V. Salvajoli, P.A. Vargas, M.A. Lopes, T.B. Brandão, A.R. Santos-Silva, Radiation-related caries assessment through the International Caries Detection and Assessment System and the Post-Radiation Dental Index, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 124 (2017) 542–547.https://doi.org/10.1016/j.oooo.2017.08.019

  36. L.B. Oliveira, C. Massignan, A.C. Oenning, K. Rovaris, M. Bolan, A.L. Porporatti, G. De Luca Canto, Validity of micro-CT for in vitro caries detection: a systematic review and meta-analysis, Dentomaxillofacial Radiology, (2019) 20190347.https://doi.org/10.1259/dmfr.20190347

Download references

Funding

This study was funded by the Brazilian Governmental Agencies (CAPES: grand number 001) and FAPESP (grant number 2017/20598–9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Azimbagirad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 List of all 105 features by category, name and label extracted using PyRadiomics. More details about each feature definition can be found in PyRadiomics documentary (https://pyradiomics.readthedocs.io/en/latest/features.html)
Table 6 Results of the neural network classifier performance on 15 subjects including 420 teeth. NHL number of hidden layers, NSF number of selected features, \(u\) upper bound used to remove the features by maximum weights less than this
Table 7 Results of the NNC performance on 15 subjects including 119 teeth including 75 vulnerable and 44 resistant teeth. NHL number of hidden layers, NSF number of selected features, \(\alpha\) parameter used in feature selection by maximum weights approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Araujo Faria, V., Azimbagirad, M., Viani Arruda, G. et al. Prediction of Radiation-Related Dental Caries Through PyRadiomics Features and Artificial Neural Network on Panoramic Radiography. J Digit Imaging 34, 1237–1248 (2021). https://doi.org/10.1007/s10278-021-00487-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-021-00487-6

Keywords

Navigation