Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The grading of glioma has clinical significance in determining a treatment strategy and evaluating prognosis to investigate a novel set of radiomic features extracted from the fractional anisotropy (FA) and mean diffusivity (MD) maps of brain diffusion tensor imaging (DTI) sequences for computer-aided grading of gliomas. This retrospective study included 108 patients who had pathologically confirmed brain gliomas and DTI scanned during 2012–2018. This cohort included 43 low-grade gliomas (LGGs; all grade II) and 65 high-grade gliomas (HGGs; grade III or IV). We extracted a set of radiomic features, including traditional texture, morphological, and novel deep features derived from pre-trained convolutional neural network models, in the manually-delineated tumor regions. We employed support vector machine and these radiomic features for two classification tasks: LGGs vs HGGs, and grade III vs IV. The area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity was reported as the performance metrics using the leave-one-out cross-validation method. When combining FA+MD, AUC = 0.93, accuracy = 0.94, sensitivity = 0.98, and specificity = 0.86 in classifying LGGs from HGGs, while AUC = 0.99, accuracy = 0.98, sensitivity = 0.98, and specificity = 1.00 in classifying grade III from IV. The AUC and accuracy remain close when features were extracted from only the solid tumor or additionally including necrosis, cyst, and peritumoral edema. Still, the effects in terms of sensitivity and specificity are mixed. Deep radiomic features derived from pre-trained convolutional neural networks showed higher prediction ability than the traditional texture and shape features in both classification experiments. Radiomic features extracted on the FA and MD maps of brain DTI images are useful for noninvasively classification/grading of LGGs vs HGGs, and grade III vs IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1–i63, 2014. https://doi.org/10.1093/neuonc/nou223

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820, 2016. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  3. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Rhun EL, Balana C, Chinot O, Bendszus M, Reijneveld JC, Dhermain F, French P, Marosi C, Watts C, Oberg I, Pilkington G, Baumert BG, Taphoorn MJB, Hegi M, Westphal M, Reifenberger G, Soffietti R, Wick W, European Association for Neuro-Oncology (EANO) Task Force on Gliomas: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–315e329, 2017. https://doi.org/10.1016/S1470-2045(17)30194-8

    Article  PubMed  Google Scholar 

  4. Omuro A, DeAngelis LM: Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850, 2013. https://doi.org/10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  5. Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ, Kaufmann TJ: 2016 updates to the WHO brain tumor classification system: what the radiologist needs to know. Radiographics 37:2164–2180, 2017. https://doi.org/10.1148/rg.2017170037

    Article  PubMed  Google Scholar 

  6. Bai Y, Lin Y, Tian J, Shi D, Cheng J, Haacke EM, Hong X, Ma B, Zhou J, Wang M: Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology 278:496–504, 2016. https://doi.org/10.1148/radiol.2015142173

    Article  PubMed  Google Scholar 

  7. Smits M, van den Bent MJ: Imaging correlates of adult glioma genotypes. Radiology 284:316–331, 2017. https://doi.org/10.1148/radiol.2017151930

    Article  PubMed  Google Scholar 

  8. Caulo M, Panara V, Tortora D, Mattei PA, Briganti C, Pravatà E, Salice S, Cotroneo AR, Tartaro A: Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 272:494–503, 2014. https://doi.org/10.1148/radiol.14132040

    Article  PubMed  Google Scholar 

  9. Liu X, Tian W, Kolar B, Yeaney GA, Qiu X, Johnson MD, Ekholm S: MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neuro Oncol 13:447–455, 2011. https://doi.org/10.1093/neuonc/noq197

    Article  PubMed  PubMed Central  Google Scholar 

  10. White ML, Zhang Y, Yu F, Jaffar Kazmi SA: Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics. AJNR Am J Neuroradiol 32:374–381, 2011. https://doi.org/10.3174/ajnr.A2267

    Article  CAS  PubMed  Google Scholar 

  11. Wang Q, Zhang J, Xu X, Chen X, Xu B: Diagnostic performance of apparent diffusion coefficient parameters for glioma grading. J Neurooncol 139:61–68, 2018. https://doi.org/10.1007/s11060-018-2841-5

    Article  PubMed  Google Scholar 

  12. Jakab A, Molnár P, Emri M, Berényi E: Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology 53:483–491, 2011. https://doi.org/10.1007/s00234-010-0769-3

    Article  PubMed  Google Scholar 

  13. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout R, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ: Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446, 2012. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gillies RJ, Kinahan PE, Hricak H: Radiomics: images are more than pictures, they are data. Radiology 278:563–577, 2016. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  15. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S: Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762, 2017. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  16. Aerts HJ et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006, 2014. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian Q et al.: Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging, 2018. https://doi.org/10.1002/jmri.26010

  18. Skogen K, Schulz A, Dormagen JB, Ganeshan B, Helseth E, Server A: Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol 85:824–829, 2016. https://doi.org/10.1016/j.ejrad.2016.01.013

    Article  PubMed  Google Scholar 

  19. Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim JH, Sohn CH: Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One 9:e108335, 2014. https://doi.org/10.1371/journal.pone.0108335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J: Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans Med Imaging 35:1299–1312, 2016. https://doi.org/10.1109/TMI.2016.2535302

    Article  PubMed  Google Scholar 

  21. Mori S, Zhang J: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539, 2006. https://doi.org/10.1016/j.neuron.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  22. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618, 2009. https://doi.org/10.1002/mrm.22147

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vedaldi A, Lenc K. MatConvNet: convolutional neural networks for MATLAB. Proceedings of the 23rd ACM International Conference on Multimedia. 2807412:ACM. 689–692. https://doi.org/10.1145/2733373.2807412.

  24. Litjens G, Kooi T, Bejnordi BE, Setio A, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal 42:60–88, 2017. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  25. Oktay O, Bai W, Lee M, Guerrero R, Kamnitsas K, Caballero J, de Marvao A, Cook S, O 'regan D, Rueckert D. Multi-input Cardiac Image Super-resolution using Convolutional Neural Networks. 2016. 246–254. https://doi.org/10.1007/978-3-319-46726-9_29

  26. Antropova N, Huynh B, Giger M: SU-D-207B-06: predicting breast cancer malignancy on DCE-MRI data using pre-trained convolutional neural networks. Med Phys 43:3349–3350, 2016. https://doi.org/10.1007/978-3-319-46726-9_29

    Article  Google Scholar 

  27. Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: delving deep into convolutional nets. 2014. https://doi.org/10.5244/C.28.6

    Book  Google Scholar 

  28. Paul R, Hawkins SH, Schabath MB, Gillies RJ, Hall LO, Goldgof DB: Predicting malignant nodules by fusing deep features with classical radiomics features. J Med Imaging (Bellingham) 5:011021, 2018. https://doi.org/10.1117/1.JMI.5.1.011021

    Article  Google Scholar 

  29. Franklin J: The elements of statistical learning: data mining, inference and prediction. Publ Am Stat Assoc 99:567–567, 2010. https://doi.org/10.1007/BF02985802

    Article  Google Scholar 

  30. Jiang L, Xiao CY, Xu Q, Sun J, Chen H, Chen YC, Yin X: Analysis of DTI-derived tensor metrics in differential diagnosis between low-grade and high-grade gliomas. Front Aging Neurosci 9:271, 2017. https://doi.org/10.3389/fnagi.2017.00271

    Article  PubMed  PubMed Central  Google Scholar 

  31. Server A, Graff BA, Josefsen R, Orheim TE, Schellhorn T, Nordhøy W, Nakstad PH: Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T. Eur J Radiol 83:e156–e165, 2014. https://doi.org/10.1016/j.ejrad.2013.12.023

    Article  PubMed  Google Scholar 

  32. Raja R, Sinha N, Saini J, Mahadevan A, Rao KN, Swaminathan A: Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology 58:1217–1231, 2016. https://doi.org/10.1007/s00234-016-1758-y

    Article  PubMed  Google Scholar 

  33. Cho HH, Lee SH, Kim J, Park H: Classification of the glioma grading using radiomics analysis. PeerJ 6:e5982, 2018. https://doi.org/10.7717/peerj.5982

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qin JB, Liu Z, Zhang H, Shen C, Wang XC, Tan Y, Wang S, Wu XF, Tian J: Grading of gliomas by using radiomic features on multiple magnetic resonance imaging (MRI) sequences. Med Sci Monit 23:2168–2178, 2017. https://doi.org/10.12659/MSM.901270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez Gutierrez D, Awwad A, Meijer L, Manita M, Jaspan T, Dineen RA, Grundy RG, Auer DP: Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 35:1009–1015, 2014. https://doi.org/10.3174/ajnr.A3784

    Article  CAS  PubMed  Google Scholar 

  36. Brynolfsson P, Nilsson D, Henriksson R, Hauksson J, Karlsson M, Garpebring A, Birgander R, Trygg J, Nyholm T, Asklund T: ADC texture--an imaging biomarker for high-grade glioma. Med Phys 41:101903, 2014. https://doi.org/10.1118/1.4894812

    Article  PubMed  Google Scholar 

  37. Kang D, Park JE, Kim YH, Kim JH, Oh JY, Kim J, Kim Y, Kim ST, Kim HS: Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol, 2018. https://doi.org/10.1093/neuonc/noy021

  38. Yang F, Dogan N, Stoyanova R, Ford JC: Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth. Phys Med 50:26–36, 2018. https://doi.org/10.1016/j.ejmp.2018.05.017

    Article  PubMed  Google Scholar 

  39. Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, Su MY, Cha S, Filippi CG, Bota D, Baldi P, Poisson LM, Jain R, Chow D: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207, 2018. https://doi.org/10.3174/ajnr.A5667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ: Residual deep convolutional neural network predicts MGMT methylation status. J Digit Imaging 30:622–628, 2017. https://doi.org/10.1007/s10278-017-0009-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou H, Chang K, Bai HX, Xiao B, Su C, Bi WL, Zhang PJ, Senders JT, Vallières M, Kavouridis VK, Boaro A, Arnaout O, Yang L, Huang RY: Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. J Neurooncol 142:299–307, 2019. https://doi.org/10.1007/s11060-019-03096-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by the National Key Research and Development Plan of China (NO. 2016YFC0103100) and the National Natural Science Foundation of China (No. 61701506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyou Luo.

Ethics declarations

The Institutional Review Board approved this retrospective study of our institution, and the requirement for informed consent was waived.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xiao, J., Wu, S. et al. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades. J Digit Imaging 33, 826–837 (2020). https://doi.org/10.1007/s10278-020-00322-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-020-00322-4

Keywords

Navigation