Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Automated Decision Support System for Detection of Leukemia from Peripheral Blood Smear Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Peripheral blood smear analysis plays a vital role in diagnosing many diseases including cancer. Leukemia is a type of cancer which begins in bone marrow and results in increased number of white blood cells in peripheral blood. Unusual variations in appearance of white blood cells indicate leukemia. In this paper, an automated method for detection of leukemia using image processing approach is proposed. In the present study, 1159 images of different brightness levels and color shades were acquired from Leishman stained peripheral blood smears. SVM classifier was used for classification of white blood cells into normal and abnormal, and also for detection of leukemic WBCs from the abnormal class. Classification of the normal white blood cells into five sub-types was performed using NN classifier. Overall classification accuracy of 98.8% was obtained using the combination of NN and SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cancer Stat Facts: Leukemia, https://seer.cancer.gov/statfacts/html/leuks.html, Accessed on 15-05-2018

  2. Facts and Statistics, https://www.lls.org/http%3A/llsorg.prod.acquia-sites.com/facts-and-statistics/facts-and-statistics-overview/facts-and-statistics, Accessed on 16-07-2019

  3. https://www.wcrf.org/int/cancer-facts-figures/worldwide-data, Accessed on 15-05-2018

  4. Irshad H, Veillard A, Roux L, Racoceanu D: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review - current status and future potential. IEEE Rev Biomedic Eng 7:97–114, 2014

    Article  Google Scholar 

  5. Xing F, Yang L: Robust Nucleus/Cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Trans Biomed Eng 9:234–263, 2016

    Article  Google Scholar 

  6. Chen P, Park DS, Yong Y, Min YH: Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput Appl 21 (6): 1217–1227, 2012

    Article  Google Scholar 

  7. do Nascimento MZ, Martins AS, Tosta TAA, Neves LA: Lymphoma images analysis using morphological and non-morphological descriptors for classification. Comput Methods Programs Biomed 163:65–77, 2018

    Article  Google Scholar 

  8. Feilong C, Miaomiao C, Jianjun C, Jianwei Z, Zhenghua Z: A novel segmentation algorithm for nucleus in white blood cells based on low-rank representation. Neural Comput Appl 28(1):503–511, 2017

    Google Scholar 

  9. Ananthi VP, Balasubramaniam P: A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Comput Methods Programs Biomed 134:165–177, 2016

    Article  CAS  Google Scholar 

  10. Foran DJ, Comaniciu D, Meer P, Goodell LA: Computer-assisted discrimination among malignant lymphomas and leukemia using immunophenotyping, intelligent image repositories, and telemicroscopy. IEEE Trans Inf Technol Biomed 4(4):265–273, 2000

    Article  CAS  Google Scholar 

  11. Agaian S, Madhukar M, Chronopoulos AT: Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Systems Journal 8(3):995–1004, 2014

    Article  Google Scholar 

  12. Amin MM, Kermani S, Talebi A, Oghli MG: Recognition of acute lymphoblastic leukemia cells in microscopic images using means clustering and support vector machine classifier. J Med Signals Sens 5(1):49–58, 2015

    Article  Google Scholar 

  13. Neoh SC, Srisukkham W, Zhang L, Todryk S, Greystoke B, Lim CP, Hossain MA, Aslam N (2015) An Intelligent Decision Support System for Leukaemia Diagnosis Using Microscopic Blood Images. Scientific Reports, https://doi.org/10.1038/srep14938

  14. Reta C, Altamirano L, Gonzalez JA, Hernandez RD, Peregrina H, Olmos I, Alonso JE, Lobato R: Segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute Leukemias. PLoS One 10(6):e0130805, 2015. https://doi.org/10.1371/journal.pone.0130805,

    Article  PubMed  PubMed Central  Google Scholar 

  15. Negm AS, Hassan OA, Kandil AH: A decision support system for Acute Leukaemia classification based on digital microscopic images. Alex Eng J 57(4):2319–2332, 2018

    Article  Google Scholar 

  16. Patel N, Mishra A: Automated leukaemia detection using microscopic images. Procedia computer science. Second International Symposium on Computer Vision and the Internet (VisionNet’15) 58:635–642, 2015

    Google Scholar 

  17. Belacel N, Vincke Ph, Scheiff JM, Boulassel MR: Acute leukemia diagnosis aid using multicriteria fuzzy assignment methodology. Comput Methods Programs Biomed 64(2):145–151, 2001

    Article  CAS  Google Scholar 

  18. Zeinab M, Habibollah D, Sadegh HM: An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J Digit Imaging 31:702–717, 2018

    Article  Google Scholar 

  19. Srisukkham W, Zhang L, Neoh SC, Todryk S, Lim CP: Intelligent leukemia diagnosis with bare-bones PSO based feature optimization. Appl Soft Comput 56:405–419, 2017

    Article  Google Scholar 

  20. Subrajeet M, Dipti P, Sanghamitra S: An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Comput Appl 24(7):1887–1904, 2014

    Google Scholar 

  21. Fatichah C, Tangel ML, Yan F, Betancourt JP, Widyanto MR, Dong F, Hirota K: Fuzzy feature representation for white blood cell differential counting in acute leukemia diagnosis. Int J Control Autom Syst 13(3):742–752, 2015

    Article  Google Scholar 

  22. Escalante HJ, Montes-y-Gómez M, González JA, Gómez-Gil P, Altamirano L, Reyes CA, Reta C, Rosales A: Acute leukemia classification by ensemble particle swarm model selection. Artif Intell Med 55:163–175, 2012

    Article  Google Scholar 

  23. Azevedo Tosta TA, Faria PR, Batista VR, Neves LA, do Nascimento MZ: Using wavelet sub-band and fuzzy 2-partition entropy to segment chronic lymphocytic leukemia images. Appl Soft Comput 64:49–58, 2018

    Article  Google Scholar 

  24. Osowski S, Siroic R, Markiewicz T, Siwek K: Application of support vector machine and genetic algorithm for improved blood cell recognition. IEEE T Instrum Meas 58(7):2159–2168, 2009

    Article  Google Scholar 

  25. Su J, Liu S, Song J: A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput Meth Prog Bio 152:115–123, 2017

    Article  Google Scholar 

  26. Nikitaev VG, Nagornov OV, Pronichev AN, Polyakov EV, Dmitrieva V: The blood smear image processing for the acute leukemia diagnostics. Inter J Bio Biomedic Eng 10:109–114, 2016

    Google Scholar 

  27. Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS: Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng 37:637–654, 2017

    Article  Google Scholar 

  28. Rosin PL: Unimodal thresholding. Pattern Recognit 34:2083–2096, 2001

    Article  Google Scholar 

  29. Bakos M Active contours and their utilization at image segmentation. In: Proc 5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics, Poprad, Slovakia, 2007, pp 313–317

  30. Kass M, Witkin A, Terzopoulos D: Snakes: Active contour models. Int J Comput Vision 1(4):321–331, 1988

    Article  Google Scholar 

  31. Zhang C, Xiao X, Li X, Chen Y.-J., Zhen W, Chang J, Zheng C, Liu Z: White blood cell segmentation by Color-Space-Based K-Means clustering. Sensors (Basel) 14(9):16128–16147, 2014

    Article  Google Scholar 

  32. Johnson SG Notes on FFT-based Differentiation, MIT Applied Mathematics, 1-11 (2011). http://math.mit.edu/stevenj/fft-deriv.pdf

  33. Matthew Sottile: Finding dents in a blobby shape, 2013, https://syntacticsalt.com/2013/01/11/finding-dents-in-an-blobby-shape/

  34. Roopa B: Hegde, keerthana prasad, harishchandra hebbar, brij mohan kumar singh: Development of a robust algorithm for detection of nuclei and classification of white blood cells in peripheral blood smear images. J Med Syst 42(6):110, 2018. (pages 8)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roopa B. Hegde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, R.B., Prasad, K., Hebbar, H. et al. Automated Decision Support System for Detection of Leukemia from Peripheral Blood Smear Images. J Digit Imaging 33, 361–374 (2020). https://doi.org/10.1007/s10278-019-00288-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-019-00288-y

Keywords

Navigation