Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Classification of malignant and benign pulmonary nodules is important for further treatment plan. The present work focuses on the classification of benign and malignant pulmonary nodules using support vector machine. The pulmonary nodules are segmented using a semi-automated technique, which requires only a seed point from the end user. Several shape-based, margin-based, and texture-based features are computed to represent the pulmonary nodules. A set of relevant features is determined for the efficient representation of nodules in the feature space. The proposed classification scheme is validated on a data set of 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative public database. The proposed classification scheme is evaluated for three configurations such as configuration 1 (composite rank of malignancy “1” and “2” as benign and “4” and “5” as malignant), configuration 2 (composite rank of malignancy “1”,“2”, and “3” as benign and “4” and “5” as malignant), and configuration 3 (composite rank of malignancy “1” and “2” as benign and “3”,“4” and “5” as malignant). The performance of the classification is evaluated in terms of area (A z) under the receiver operating characteristic curve. The A z achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 0.9505, 0.8822, and 0.8488, respectively. The proposed method outperforms the most recent technique, which depends on the manual segmentation of pulmonary nodules by a trained radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Cancer Society, Cancer facts and figure 2015

  2. Armato III SG, Altman MB, Wilkie J, Sone S, Li F, Doi K, Roy AS: Automated lung nodule classification following automated nodule detection on CT: a serial approach. Med Phys 30(6):1188–1197, 2003

    Article  Google Scholar 

  3. Armato III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Beek EJR, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DPY, Roberts RY, Smith AR, Starkey A, Batra P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallam M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY, Clarke LP: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931, 2011

    Article  Google Scholar 

  4. Austin J, Müller N, Friedman PJ, Hansell DM, Naidich DP, Remy-Jardin M, Webb WR, Zerhouni EA: Glossary of terms for CT of the lungs: recommendations of the nomenclature committee of the fleischner society. Radiology 200(2):327–331, 1996

    Article  CAS  PubMed  Google Scholar 

  5. Dalal N, Triggs B, Schmid C: Human detection using oriented histograms of flow and appearance. Computer Vision–ECCV 2006. Springer, 2006, pp 428–441

  6. Dasovich GM, Kim R, Raicu DS, Furst JD: A model for the relationship between semantic and content based similarity using LIDC. Proceedings of SPIE Medical Imaging, 2010, pp 762, 431–762, 431–10

  7. Dhara AK, Mukhopadhyay S, Das Gupta R, Garg M, Khandelwal N: A segmentation framework of pulmonary nodules in lung CT images. J Digit Imaging, 2015. doi:10.1007/s10278-015-9812-6

  8. Dhara AK, Mukhopadhyay S, Saha P, Garg M, Khandelwal N: Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. Int J Comput Assist Radiol Surg, 2015. doi:10.1007/s11548-015-1284-0

  9. Diederich S, Wormanns D, Semik M, Thomas M, Lenzen H, Roos N, Heindel W: Screening for early lung cancer with low-dose spiral CT: Prevalence in 817 asymptomatic smokers. Radiology 222(3):773–781, 2002

    Article  PubMed  Google Scholar 

  10. El-Baz A, Nitzken M, Vanbogaert E, Gimel’farb G, Falk R, El-Ghar MA: A novel shape-based diagnostic approach for early diagnosis of lung nodules. Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, pp 137–140

  11. Elizabeth D, Nehemiah H, Raj CR, Kannan A: Computer-aided diagnosis of lung cancer based on analysis of the significant slice of chest computed tomography image. IET Image Process 6(6):697–705, 2012

    Article  Google Scholar 

  12. Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z: Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 28(1):99–115, 2014

    Article  PubMed Central  Google Scholar 

  13. Haralick RM, Shanmugam K, Dinstein IH: Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621, 1973

    Article  Google Scholar 

  14. Iwano S, Nakamura T, Kamioka Y, Ishigaki T: Computer-aided diagnosis: a shape classification of pulmonary nodules imaged by high-resolution CT. Comput Med Imaging Graph 29(7):565–570, 2005

    Article  PubMed  Google Scholar 

  15. Li F, Aoyama M, Shiraishi J, Abe H, Li Q, Suzuki K, Engelmann R, Sone S, MacMahon H, Doi K: Radiologists’ performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. Am J Roentgenol 183(5):1209– 1215, 2004

    Article  Google Scholar 

  16. Lorensen WE, Cline HE: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput Graph 21(4):163–169, 1987

    Article  Google Scholar 

  17. Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, Peitgen HO: Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 25(4):417–434, 2006

    Article  PubMed  Google Scholar 

  18. Kubota T, Jerebko AK, Dewan M, Salganicoff M, Krishnan A: Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med Image Anal 15(1):133–154, 2011

    Article  PubMed  Google Scholar 

  19. Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H, Katsuragawa S, Doi K: Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Am J Roentgenol 178(3):657–663, 2002

    Article  Google Scholar 

  20. McNitt-Gray MF, Hart EM, Wyckoff N, Sayre JW, Goldin JG, Aberle DR: A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution ct: preliminary results. Med Phys 26(6):880–888, 1999

    Article  CAS  PubMed  Google Scholar 

  21. Moltz JH, Kuhnigk JM, Bornemann L, Peitgen H: Segmentation of juxtapleural lung nodules in ct scan based on ellipsoid approximation. Proceedings of First International Workshop on Pulmonary Image Processing. New York, 2008, pp 25–32

  22. Noessner J, Niepert M, Stuckenschmidt H: Rockit: Exploiting parallelism and symmetry for map inference in statistical relational models. arXiv:1304.4379, 2013

  23. Rangayyan RM, El-Faramawy NM, Desautels JL, Alim OA: Measures of acutance and shape for classification of breast tumors. IEEE Trans Med Imaging 16(6):799–810, 1997

    Article  CAS  PubMed  Google Scholar 

  24. Seitz KA, Giuca AM, Furst J, Raicu D: Learning lung nodule similarity using a genetic algorithm. Proceedings of SPIE Medical Imaging 2012. San Deigo, USA, 2012, pp 831,537–831,537–7

  25. Saini K, Dewal ML, Manojkumar R: A fast region-based active contour model for boundary detection of echocardiographic images. J Digit Imaging 25(2):271–278, 2012

    Article  PubMed  Google Scholar 

  26. Silva JS, Santos JB, Roxo D, Martins P, Castela E, Martins R: Algorithm versus physicians variability evaluation in the cardiac chambers extraction. IEEE Trans Inf Technol Biomed 16(5):835–841, 2012

    Article  PubMed  Google Scholar 

  27. Sladoje N, Nyström I, Saha PK: Measurements of digitized objects with fuzzy borders in 2D and 3D. Image Vis Comput 23(2):123–132, 2005

    Article  Google Scholar 

  28. Suzuki K, Li F, Sone S, et al.: Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24(9):1138– 1150, 2005

    Article  PubMed  Google Scholar 

  29. Swensen SJ, Jett JR, Sloan JA, Midthun DE, Hartman TE, Sykes AM, Aughenbaugh GL, Zink FE, Hillman SL, Noetzel GR, et al.: Screening for lung cancer with low-dose spiral computed tomography. Am J Respir Crit Care Med 165(4):508–513, 2002

    Article  PubMed  Google Scholar 

  30. Tripathi AK, Mukhopadhyay S, Dhara AK: Performance metrics for image contrast. Proceedings of IEEE International Conference on Image Information Processing. India: Simla, 2011, pp 1–4

    Google Scholar 

  31. Way TW, Hadjiiski LM, Sahiner B, Chan HP, Cascade PN, Kazerooni EA, Bogot N, Zhou C: Computer-aided diagnosis of pulmonary nodules on ct scans: segmentation and classification using 3d active contours. Med Phys 33(7):2323–2337, 2006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Mukhopadhyay.

Ethics declarations

This work is done using a public lung CT image data set and for this type of study formal consent is not required. This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interests

This study was funded by Department of Electronics Technology, Govt. of India, Grant number 1(3)2009-ME&TMD and 1(2)/2013-ME &TMD/ESDA, respectively. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, A.K., Mukhopadhyay, S., Dutta, A. et al. A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J Digit Imaging 29, 466–475 (2016). https://doi.org/10.1007/s10278-015-9857-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-015-9857-6

Keywords

Navigation