Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Computer-aided Diagnosis of Proliferative Diabetic Retinopathy via Modeling of the Major Temporal Arcade in Retinal Fundus Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Monitoring the openness of the major temporal arcade (MTA) and how it changes over time could facilitate diagnosis and treatment of proliferative diabetic retinopathy (PDR). We present methods for user-guided semiautomated modeling and measurement of the openness of the MTA based on Gabor filters for the detection of retinal vessels, morphological image processing, and a form of the generalized Hough transform for the detection of parabolas. The methods, implemented via a graphical user interface, were tested with retinal fundus images of 11 normal individuals and 11 patients with PDR in the present pilot study on potential clinical application. A method of arcade angle measurement was used for comparative analysis. The results using the openness parameters of single- and dual-parabolic models as well as the arcade angle measurements indicate areas under the receiver operating characteristics of A z = 0.87, 0.82, and 0.80, respectively. The proposed methods are expected to facilitate quantitative analysis of the architecture of the MTA, as well as assist in detection and diagnosis of PDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patton N, Aslam TM, MacGillivray T, Deary IJ, Dhillon B, Eikelboom RH, Yogesan K, Constable IJ: Retinal image analysis: Concepts, applications and potential. Prog Retin Eye Res 25(1):99–127, 2006

    Article  PubMed  Google Scholar 

  2. Evans J, Rooney C, Ashgood S, Dattan N, Wormald R: Blindness and partial sight in England and Wales April 1900–March 1991. Health Trends 28:5–12, 1996

    Google Scholar 

  3. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, Klein R: Retinopathy in diabetes. Diabetes Care 7:84–87, 2004

    Article  Google Scholar 

  4. Noble J, Chaudhary V: Diabetic retinopathy. Can Med Assoc J 182:1646–1646, 2010

    Article  Google Scholar 

  5. Boucher MC, Desroches G, Garcia-Salinas R, Kherani A, Maberley D, Olivier S, Oh M, Stockl F: Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada. Can J Ophthalmol 43(6):658–668, 2008

    Article  PubMed  Google Scholar 

  6. Quade R: Evaluation of the expanding access to diabetic retinopathy screening initiative. Evaluation report, California HealthCare Foundation, Oakland, CA. Prepared by Quade and Associates for California HealthCare Foundation, 2011

  7. Worsley D, Simmons D: Diabetic retinopathy and public health. In: Jelinek HF, Cree MJ Eds. Automated Image Detection of Retinal Pathology. Boca Raton: CRC Press, 2010, pp 27–66

  8. Acharya R, Tan W, Yun WL, Ng EYK, Min LC, Chee C, Gupta M, Nayak J, Suri JS: The human eye. In: Acharya R, EYK Ng, Suri JS Eds. Image Modeling of the Human Eye. Norwood, MA: Artech House, 2008, pp 1–35

  9. Jelinek HF, Cree MJ: Introduction. In: Jelinek HF, Cree MJ Eds. Automated Image Detection of Retinal Pathology. Boca Raton: CRC Press, 2010, pp 1–26

  10. Kohner E, Sleightholm M: Does microaneurysm count reflect the severity of the early diabetic retinopathy. Opththalmology 93(5):586–589, 1986

    Article  CAS  Google Scholar 

  11. Klein R, Meuer SM, Moss SE: Retinal microaneurysm counts and 10-year progression of diabetic retinopathy. Arch Ophthalmol 113(11):1386–1391, 1995

    Article  PubMed  CAS  Google Scholar 

  12. Meyerle CB, Chew EY, Ferris III FL: Nonproliferative diabetic retinopathy. In: Duh EJ Ed. Diabetic Retinopathy, Contemporary Diabetes. Totowa: Humana Press, 2008, pp 3–27

  13. Danis RP, Davis MD: Proliferative diabetic retinopathy. In: Duh EJ Ed. Diabetic Retinopathy, Contemporary Diabetes. Totowa: Humana Press, 2008, pp 29–65

  14. Meier P, Wiedemann P: Vitrectomy for traction macular detachment in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 235:569–574, 1997

    Article  PubMed  CAS  Google Scholar 

  15. Fledelius HC, Goldschmidt E: Optic disc appearance and retinal temporal vessel arcade geometry in high myopia, as based on follow-up data over 38 years. Acta Ophthalmol. (Copenh) 88(5):514–520, 2010

    Article  Google Scholar 

  16. Wong K, Ng J, Ells AL, Fielder AR, Wilson CM: The temporal and nasal retinal arteriolar and venular angles in preterm infants. Br J Ophthalmol 95(12):1723–1727, 2011

    Article  PubMed  Google Scholar 

  17. Abràmoff MD, Niemeijer M: Detecting retinal pathology automatically with special emphasis on diabetic retinopathy. In: Jelinek HF, Cree MJ Eds. Automated Image Detection of Retinal Pathology. Boca Raton: CRC Press, 2010, pp 67–78

  18. Grisan E, Ruggeri A: A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Engineering in Medicine and Biology Society, 25th Annual International Conference of the IEEE, vol 1, pp 1890–1893, 2003

  19. Grisan E, Ruggeri A: Segmentation of candidate dark lesions in fundus images based on local thresholding and pixel density. In: Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE, pp 6735–6738, 2007

  20. Niemeijer M, Abràmoff MD, van Ginneken B: Segmentation of the optic disk, macula and vascular arch in fundus photographs. IEEE Trans Med Imaging 26(1):116–127, 2007

    Article  PubMed  Google Scholar 

  21. Niemeijer M, Abràmoff MD, van Ginneken B: Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans Med Imaging 28(5):775–785, 2009

    Article  PubMed  Google Scholar 

  22. Narasimha-Iyer H, Can A, Roysam B, Stewart CV, Tanenbaum HL, Majerovics A, Singh H: Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans Biomed Eng 53(6):1084–1098, 2006

    Article  PubMed  Google Scholar 

  23. Wilson C, Theodorou M, Cocker KD, Fielder AR: The temporal retinal vessel angle and infants born preterm. Br J Ophthalmol 90:702–704, 2006

    Article  PubMed  CAS  Google Scholar 

  24. Oloumi F, Rangayyan RM, Ells AL: A graphical user interface for measurement of temporal arcade angles in fundus images of the retina. In: Canadian Conference on Electrical and Computer Engineering (CCECE), Proc. IEEE Canada 25th Annual, p 4 on CD–ROM, Montreal Canada, 2012

  25. Oloumi F, Rangayyan RM, Ells AL: Parabolic modeling of the major temporal arcade in retinal fundus images. IEEE Trans Instrum Meas (TIM) 61(7):1825–1838, 2012

    Article  Google Scholar 

  26. Oloumi F, Rangayyan RM, Ells AL: A graphical user interface for measurement of the openness of the retinal temporal arcade. In: Proc. IEEE International Symposium on Medical Measurements and Applications (MeMeA), Budapest, Hungary, 2012, pp 238–241

  27. Oloumi F, Rangayyan RM, Ells AL: Computer-aided diagnosis of proliferative diabetic retinopathy. In: Engineering in Medicine and Biology Society (EMBS), 34th Annual International Conference of the IEEE, San Diego, CA, 2012, pp 1438–1441

  28. Structured Analysis of the Retina. http://www.ces.clemson.edu/~ahoover/stare/. Accessed Mar 2013

  29. DiaRetDB1 V2.1: Diabetic retinopathy database and evaluation protocol. http://www2.it.lut.fi/project/imageret/diaretdb1_v2_1/. Accessed Mar 2013

  30. HEI-MED: Hamilton eye institute macular edema dataset. http://vibot.u-bourgogne.fr/luca/heimed.php. Accessed Mar 2013

  31. MESSIDOR: Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology. http://messidor.crihan.fr/index-en.php. Accessed Mar 2013

  32. Rangayyan RM, Zhu X, Ayres FJ, Ells AL: Detection of the optic nerve head in fundus images of the retina with Gabor filters and phase portrait analysis. J Digit Imaging 23(4):438–453, 2010

    Article  PubMed  Google Scholar 

  33. Zhu X, Rangayyan RM, Ells AL: Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles. J Digit Imaging 23(3):332–341, 2010

    Article  PubMed  Google Scholar 

  34. Hoover A, Goldbaum M: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958, 2003

    Article  PubMed  Google Scholar 

  35. Foracchia M, Grisan E, Ruggeri A: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23(10):1189–1195, 2004

    Article  PubMed  CAS  Google Scholar 

  36. Rangayyan RM, Ayres FJ, Oloumi F, Oloumi F, Eshghzadeh-Zanjani P: Detection of blood vessels in the retina with multiscale Gabor filters. J Electron Imaging 17(2):1–7, 2008. Article no. 023018

    Article  Google Scholar 

  37. Metz CE: Basic principles of ROC analysis. Semin Nucl Med VIII(4):283–298, 1978

    Google Scholar 

  38. Acton ST: A pyramidal algorithm for area morphology. In: Proceedings of IEEE International Conference on Image Processing, Vancouver, BC, Canada, 2000, pp 10–13

  39. ROCKIT. Metz ROC Software. http://metz-roc.uchicago.edu/MetzROC/software. Accessed Mar 2013

  40. Ells AL, MacKeen LD: Dynamic documentation of the evolution of retinopathy of prematurity in video format. J Am Assoc Pediatr Ophthalmol Strabismus 12(4):349–351, 2008

    Article  Google Scholar 

  41. Fleming AD, Goatman KA, Philip S, Olson JA, Sharp PF: Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys Med Biol 52:331–345, 2007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangaraj M. Rangayyan.

Additional information

This work was supported by the Natural Sciences and Engineering Research Council of Canada. We thank Dr. A. Hoover for help with the STARE images.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oloumi, F., Rangayyan, R.M. & Ells, A.L. Computer-aided Diagnosis of Proliferative Diabetic Retinopathy via Modeling of the Major Temporal Arcade in Retinal Fundus Images. J Digit Imaging 26, 1124–1130 (2013). https://doi.org/10.1007/s10278-013-9592-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-013-9592-9

Keywords

Navigation