Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Effective Non-rigid Registration Approach for Ultrasound Image Based On “Demons” Algorithm

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an “inertia force” derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jemal A, Siegel R, Xu J, Ward E: “Cancer statistics 2010”, CA: A Cancer Journal for Clinicians, 2010.

  2. Maintz JB, Viergever MA: A survey of medical image registration. Medical Image Analysis 2(1):1–36, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Rogelj P, Lovacic S: Symmetric image registration. SPIE-Medical Imaging: Image Processing, 334, 2003.

  4. Ji JX, Pan H, Liang ZP: Further analysis of interpolation effects in mutual information-based image registration. IEEE Trans Med Imaging 22(9):1131–1140, 2003

    Article  PubMed  Google Scholar 

  5. Penney GP, Schnabel JA, Rueckert D, Viergever MA, Niessen WJ: Registration-based interpolation. IEEE Trans Med Imaging 23(7):922–926, 2004

    Article  PubMed  CAS  Google Scholar 

  6. Chen HM, Varshney PK: Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation IEEE Trans. Med Imaging 22(9):1111–1119, 2003

    Article  Google Scholar 

  7. Woods RP, Cherry SR, Mazziotta JC: Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16(4):620–633, 1992

    Article  PubMed  CAS  Google Scholar 

  8. Woods RP, Mazziotta JC, Cherry SR: MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17(4):536–546, 1993

    Article  PubMed  CAS  Google Scholar 

  9. Brown LG: A survey of image registration techniques. ACM Computing Surveys, 326-376, 1992.

  10. Hill DL, Batchelor PG, Holden M, Hawkes DJ: Medical image registration. Phys Med Bio 46(3):1–45, 2001

    Article  Google Scholar 

  11. Pluim JP, Maintz JB, Viergever MA: Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004, 2003

    Article  PubMed  Google Scholar 

  12. Cheng HD, Shan J, Ju W, Guo YH, Zhang L: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recog 43:299–317, 2010

    Article  Google Scholar 

  13. Woo JH, Hong BW, Hu CH, Shung KK, Kuo CC, Slomka PJ: Non-rigid ultrasound image registration based on intensity and local phase information. J Sign Process Syst 54:33–43, 2009

    Article  Google Scholar 

  14. Chang RF, Chen CJ, Etsuo T, Kuo CM, Chen DR: Image stitching and computer-aided diagnosis for whole breast ultrasound image. Proceedings of The 20th International Congress and Exhibition on Computer Assisted Radiology and Surgery, Osaka, Japan, 2006.

  15. Chang RF, Chen CJ, Etsuo T, Chen DR, Chou YH: Image stitching for three-pass whole breast ultrasound. Proceedings of the 2006 SPIE Medical Imaging Symposium, San Diego, CA, 2006.

  16. Chen CJ, Chang RF, Moon WK, Chen DR, Wu HK: 2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration. Ultrasound Med Bio 32(6):837–846, 2006

    Article  Google Scholar 

  17. Thirion JP: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2:243–260, 1998

    Article  PubMed  CAS  Google Scholar 

  18. Wang H, Dong L, Daniel DJ, Mohan R, Garden AS, Ang KK, Kuban DA, Bonnen M, Chang JY, Cheung R: Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy. Phys Med Biol 50:2887–2905, 2005

    Article  PubMed  CAS  Google Scholar 

  19. Yang D, Low DA, Deasy JO, Naqa IE: A fast inverse consistent deformable image registration method based on symmetric optical flow computation. Phys Med Biol 53:6143–6165, 2008

    Article  PubMed  Google Scholar 

  20. Vezhnevets V, Konouchine V: “Grow cut” - interactive multi-label N-D image segmentation by cellular automata. Proc. of Graphicon. 150-156, 2005.

  21. Jeongtae K, Jeffrey AF: Image registration using robust correlation. IEEE Trans Med Imaging 23(11):1430–1443, 2004

    Article  Google Scholar 

  22. Paninski L: Estimation of entropy and mutual information. Neural Comput 15:1191–1253, 2003

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Nature Science Foundation of China (NSFC) greatly appreciated; Grant numbers: 81071216, 61100097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Cheng, H.D., Huang, J. et al. An Effective Non-rigid Registration Approach for Ultrasound Image Based On “Demons” Algorithm. J Digit Imaging 26, 521–529 (2013). https://doi.org/10.1007/s10278-012-9532-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-012-9532-0

Key words

Navigation