Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Transport properties in small-scale coastal flows: relative dispersion from VHF radar measurements in the Gulf of La Spezia

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Lagrangian transport characteristics in the Gulf of La Spezia, a 5 × 10-km area along the western coast of Italy, are investigated using data collected from a very high frequency (VHF) radar system with 250 m and 30-min resolution and two clusters of Coastal Dynamics Experiment surface drifters during 2 weeks in the summer of 2007. The surface drifters are found to follow the temporal and spatial evolution of the finite-scale Lyapunov exponents (FSLEs) computed by the VHF radar, indicating the precision of both the radar measurements and the diagnostic FSLE in mapping accurately the transport pathways. In light of this agreement, an analysis of the relative dispersion is conducted. It is found that the average FSLE value varies within a narrow range of \(4 \;\mbox{day}^{-1} \leq \lambda \leq 7 \;\mbox{day}^{-1}\) and displays an exponential regime over the entire extent of the measurements. The dynamical implication is that relative dispersion is controlled nonlocally, namely by slow, persistent, energetic mesoscale structures as opposed to the rapidly evolving high-gradient small-scale turbulent features. The value of the exponent is about an order of magnitude larger than those found in previous modeling studies and analysis of SCULP data in the Gulf of Mexico but somewhat smaller than that estimated from CLIMODE drifters in the Gulf Stream region. Scaling of the FSLE using a metric of resolved gradients of the Eulerian fields in the form of a positive Okubo–Weiss criterion is useful, but not as precise as in modeling studies. The horizontal flow convergence is found to have a small yet tangible effect on relative dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aref H (1984) Stirring by chaotic advection. J Fluid Mech 192:115–173

    Google Scholar 

  • Artale V, Boffetta G, Celani A, Cencini M, Vulpiani A (1997) Dispersion of passive tracers in closed basins: beyond the diffusion coefficient. Phys Fluids 9:3162–3171

    Article  Google Scholar 

  • Astraldi M, Gasparini G, Manzella G (1990) Temporal variability of currents in the eastern Ligurian Sea. J Geophys Res 95(C2):1515–1522

    Article  Google Scholar 

  • Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1997) Predictability in the large: an extension of the concept of Lyapunov exponent. J Phys A 30:1–26

    Article  Google Scholar 

  • Barbin Y, Broche P, de Maistre J-C, Forget P, Gaggelli J (2006) Practical results of direction finding method applied on a 4 antenna linear array WERA. ROW-6 Radiowave Oceanography Workshop

  • Barrick D, Lipa BJ (1986) The second-order shallow water hydrodynamic coupling coefficient in interpretation of HF radar sea echo. IEEE J Oceanic Eng OE-11:310–315

    Article  Google Scholar 

  • Bauer S, Swenson M, Griffa A (2002) Eddy mean flow decomposition and eddy diffusivity estimates in the tropical Pacific Ocean: 2. Results. J Geophys Res 107:C10. doi:10.1029/2000JC000613

    Article  Google Scholar 

  • Bennett AF (1984) Relative dispersion—local and nonlocal dynamics. J Atmos Sci 41(11):1881–1886

    Article  Google Scholar 

  • Berloff P, McWilliams J (2002) Material transport in oceanic gyres. Part 2: hierarchy of stochastic models. J Phys Oceanogr 32/3:797–830

    Article  Google Scholar 

  • Boccaletti G, Ferrari R, Fox-Kemper B (2007) Mixed layer instabilities and restratification. J Phys Oceanogr 37:2228–2250

    Article  Google Scholar 

  • Bordone A, Lisca A (2009) Meteorological data from the ENEA station of S.Teresa (sp). RT ENEA/2009/15/ACS

  • Broche P, Barbin Y, De Maistre J-C, Forget P, Gaggelli J (2004) Antennas processing and design for VHF COSMER coastal radar. ROW-4 Radiowave Oceanography Workshop

  • Castellari S, Griffa A, Özgökmen T, Poulain P-M (2001) Prediction of particle trajectories in the Adriatic Sea using Lagrangian data assimilation. J Mar Syst 29:33–50

    Article  Google Scholar 

  • Coulliette C, Wiggins S (2000) Intergyre transport in a wind-driven, quasigeostrophic double gyre: an application of lobe dynamics. Nonlinear Process Geophys 7:59–85

    Article  Google Scholar 

  • Craik A, Leibovich S (1976) A rational model for Langmuir circulations. J Fluid Mech 73:401–426

    Article  Google Scholar 

  • Davis R (1985) Drifter observations of coastal currents during CODE. The method and descriptive view. J Geophys Res 90:4741–4755

    Article  Google Scholar 

  • Davis R (1991) Observing the general-circulation with floats. Deep-Sea Res 38:531–571

    Article  Google Scholar 

  • d’Ovidio F, Fernandez V, Hernandez-Garcia E, Lopez C (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett 31:L17203. doi:10.1029/2004GL020328

    Article  Google Scholar 

  • Essen H-H, Gurgel K-W, Schlick T (2000) On the accuracy of current measurements by means of HF radar. IEEE J Oceanic Eng 25:472–480

    Article  Google Scholar 

  • Falco P, Griffa A, Poulain P, Zambianchi E (2000) Transport properties in the Adriatic Sea as deduced from drifter data. J Phys Oceanogr 30:2055–2071

    Article  Google Scholar 

  • Fratantoni D (2001) North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J Geophys Res 106:22067–22093

    Article  Google Scholar 

  • Gasparini G, Abbate M, Bordone A, Cerrati G, Galli C, Lazzoni E, Negri A (2009) Circulation and biomass distribution during warm season in the Gulf of La Spezia (north-western Mediterranean). J Mar Syst 78/1:S48–S62

    Article  Google Scholar 

  • Griffa A (1996) Applications of stochastic particle models to oceanographic problems. In: Adler R, Müller P, Rozovskii B (eds) Stochastic modelling in physical oceanography, vol 467. Birkhauser, Boston, pp 113–128

    Google Scholar 

  • Griffa A, Lumpkin R, Veneziani M (2008) Cyclonic and anticyclonic motion in the upper ocean. Geophys Res Lett 35:L01608. doi:10.1029/2007GL032100

    Article  Google Scholar 

  • Gurgel K-W, Antonischski G, Essen H-H, Schlick T (1999) Wellen radar (WERA): a new ground wave radar for remote sensing. Coast Eng 37:219–234

    Article  Google Scholar 

  • Haller G (1997) Distinguished material surfaces and coherent structures in three-dimensional flows. Physica D 149/4:248–277

    Google Scholar 

  • Haller G, Poje A (1998) Finite time transport in aperiodic flows. Physica D 119:352–380

    Article  Google Scholar 

  • Haza AC, Griffa A, Martin P, Molcard A, Özgökmen TM, Poje AC, Barbanti R, Book JW, Poulain PM, Rixen M, Zanasca P (2007) Model-based directed drifter launches in the Adriatic Sea: results from the DART experiment. Geophys Res Lett 34:L10605. doi:10.1029/2007GL029634

    Article  Google Scholar 

  • Haza AC, Poje A, Özgökmen TM, Martin P (2008) Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Model 22:48–65

    Google Scholar 

  • Kaplan D, Largier J, Botsford L (2005) HF radar observations of surface circulation off Bodega Bay (northern California, USA). J Geophys Res 110:C10020. doi:10.1029/2005JC002959

    Article  Google Scholar 

  • LaCasce J, Bower A (2000) Relative dispersion in the subsurface North Atlantic. J Mar Res 58:863–894

    Article  Google Scholar 

  • LaCasce JH, Ohlmann C (2003) Relative dispersion at the surface of the Gulf of Mexico. J Mar Res 61(3):285–312

    Article  Google Scholar 

  • Lacorata G, Aurell E, Vulpiani A (2001) Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Ann Geophys 19:121–129

    Article  Google Scholar 

  • Langmuir I (1938) Surface motion of water induced by wind. Science 41:119–123

    Article  Google Scholar 

  • Lesieur M (1997) Turbulence in fluids. In: Fluid mechanics and its applications, vol 40. Kluwer Academic, Amsterdam

    Google Scholar 

  • Lumpkin R, Ellipot S (2010) Surface drifter pair spreading in the North Atlantic. J Geophys Res (in press)

  • Mahadevan A (2006) Modeling vertical motion at ocean fronts: are nonhydrostatic effects relevant at submesoscales? Ocean Model 14:222–240

    Article  Google Scholar 

  • Martin PJ (2000) Description of the navy coastal ocean model version 1.0. Naval Research Laboratory report, RL/FR/7322-00-9962, 42 pp

  • McWilliams JC (1985) Submesoscale, coherent vortices in the ocean. Rev Geophys 23(2):165–182

    Article  Google Scholar 

  • McWilliams JC (2003) Diagnostic force balance and its limits. In: Nonlin. proc. geophys. fluid dyn., pp 287–304

  • Miller P, Pratt L, Helfrich K, Jones C (2002) Chaotic transport of mass and potential vorticity for an island recirculation. J Phys Oceanogr 32:80–102

    Article  Google Scholar 

  • Molcard A, Poje A, Özgökmen T (2006) Directed drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories. Ocean Model 12:268–289

    Article  Google Scholar 

  • Molcard A, Poulain P, Forget P, Griffa A, Barbin Y, Gaggeli J, Maistre JD, Rixen M (2009) Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J Mar Syst 78/1:S78–S89

    Google Scholar 

  • Molemaker M, McWilliams J (2005) Baroclinic instability and loss of balance. J Phys Oceanogr 35:1505–1517

    Article  Google Scholar 

  • Ohlmann C, White P, Washburn L, Terrill E, Emery B, Otero M (2007) Interpretation of coastal HF radar-derived surface currents with high-resolution drifter data. J Atmos Ocean Technol 24/4:666–680

    Article  Google Scholar 

  • Okubo A (1970) Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res 17(3):445–454

    Google Scholar 

  • Olascoaga M, Rypina II, Brown MG, Beron-Vera FJ, Kocak H, Brand LE, Halliwell GR, Shay LK (2006) Persistent transport barrier on the West Florida Shelf. Geophys Res Lett 33:22603. doi:10.1029/2006GL027800

    Article  Google Scholar 

  • Ottino J (1989) The kinematics of mixing: stretching, chaos and transport. Cambridge University Press, Cambridge

    Google Scholar 

  • Özgökmen T, Griffa A, Piterbarg L, Mariano A (2000) On the predictability of Lagrangian trajectories in the ocean. J Atmos Ocean Technol 17:366–383

    Article  Google Scholar 

  • Özgökmen T, Piterbarg L, Mariano A, Ryan E (2001) Predictability of drifter trajectories in the tropical Pacific Ocean. J Phys Oceanogr 31:2691–2720

    Article  Google Scholar 

  • Paduan J, Kim K, Cook M, Chavez F (2006) Calibration and validation of direction finding high frequency radar ocean current observations. IEEE J Oceanic Eng 31(4):862–875. doi:10.1109/JOE.2006.886195

    Article  Google Scholar 

  • Paduan J, Rosenfeld L (1996) Remotely sensed surface currents in Monterey Bay from shore based HF radar (Coastal ocean dynamics application radar). J Geophys Res 101/C9:20669–20686

    Article  Google Scholar 

  • Poje A, Haller GG (1999) Geometry of cross-stream mixing in a double-gyre ocean model. J Phys Oceanogr 29:1649–1665

    Article  Google Scholar 

  • Poje A, Haza A, Özgökmen T, Magaldi M, Garraffo Z (2010) Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model 31:36–50

    Article  Google Scholar 

  • Poje AC, Toner M, Kirwan AD, Jones CKRT (2002) Drifter launch strategies based on Lagrangian templates. J Phys Oceanogr 32:1855–1869

    Article  Google Scholar 

  • Poulain P-M (1999) Drifter observations of surface circulation in the Adriatic Sea between December 1994 and March 1996. J Mar Syst 20:231–253

    Article  Google Scholar 

  • Richardson P (2001) Drifters and floats. In: Encyclopedia of ocean studies, vol 2, pp 767–774

  • Schott F, Frisch S, Larsen J (1986) Comparison of surface currents measured by HF Doppler Radar in the western Florida Straits during November 1983 to January 1984 and Florida Current transport. J Geophys Res 91:8451–8460

    Article  Google Scholar 

  • Shadden S, Lekien F, Paduan JD, Chavez FC, Marsden JE (2008) The correlation between surface drifters and coherent structures based on high-frequency data in Monterey Bay. Deep-Sea Res II 56:161–172

    Article  Google Scholar 

  • Shay L, Lentz S, Graber H, Haus B (1998a) Current structure variations detected by high frequency radar and vector measuring current meters. J Atmos Ocean Technol 15:237–256

    Article  Google Scholar 

  • Shay L, Lee T, Williams E, Graber H, Rooth C (1998b) Effects of low frequency current variability on submesoscale near-inertial vortices. J Geophys Res 103:18691–18714

    Article  Google Scholar 

  • Shay L, Cook T, Hallock Z, Haus B, Graber H, Martinez J (2001) The strength of the M2 tide at the Chesapeake Bay mouth. J Phys Oceanogr 31:427–449

    Article  Google Scholar 

  • Shay L, Martinez-Pedraja J, Cook T, Haus B (2007) High-frequency radar mapping of surface currents using WERA. J Atmos Ocean Technol 24:484–503

    Article  Google Scholar 

  • Skyllingstad ED, Denbo D (1995) An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J Geophys Res 100:8501–8522

    Article  Google Scholar 

  • Steward R, Joy J (1974) HF radio measurements of surface currents. Deep-Sea Res 21:1039–1049

    Google Scholar 

  • Thomas LN, Tandon A, Mahadevan A (2008) Sub-mesoscale processes and dynamics. In Hecht MW, Hasumi H (eds) Ocean modeling in an eddying regime, geophysical monograph series, vol 177. American Geophysical Union, Washington DC, pp 17–38

    Google Scholar 

  • Toner M, Poje AC (2004) Lagrangian velocity statistics of directed launch strategies in a Gulf of Mexico model. Nonlinear Process Geophys 11:35–46

    Article  Google Scholar 

  • Ullman D, O’Donnell J, Kohut J, Fake T, Allen A (2006) Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties. J Geophys Res 111:C12005. doi:10.1029/2006JC003715

    Article  Google Scholar 

  • Vandenbulcke L, Beckers J, Lenartz F, Barth A, Poulain P, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction during the DART06 and MREA07 campaigns. Prog Oceanogr 82:149–167

    Article  Google Scholar 

  • Veneziani M, Griffa A, Garraffo Z, Chassignet E (2005a) Lagrangian spin parameter and coherent structures from trajectories released in a high-resolution ocean model. J Mar Res 63/4:753–788

    Article  Google Scholar 

  • Veneziani M, Griffa A, Reynolds A, Garraffo Z, Chassignet E (2005b) Parameterizations of Lagrangian spin statistics and particle dispersion in the presence of coherent vortices. J Mar Res 63/6:1057–1083

    Article  Google Scholar 

  • Weiss J (1991) The dynamics of enstrophy transfer in 2-dimensional hydrodynamics. Physica D 48(2–3):273–294

    Article  Google Scholar 

  • Weller R, Price J (1988) Langmuir circulation within the oceanic mixed layer. Deep-Sea Res 35:711–747

    Article  Google Scholar 

  • Wiggins S (2005) The dynamical systems approach to Lagrangian transport in oceanic flows. Ann Rev Fluid Mech 37:295–328

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to ONR via grants N00014-05-1-0094 and N00014-05-1-0095 (Haza, Özgökmen, Griffa), N00014-08-2-1146 and N00173-07-2-C901 (Peggion), and to EC through the ECOOP project (Griffa). We wish to acknowledge the contribution form the NRL scientific team with special thanks to Dr. C. Rowley and Mr. R. Allard and Dr E. Coelho. We also thank A. Lisca for sharing the data from the ENEA meteo station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamay M. Özgökmen.

Additional information

Responsible Editor: Pierre De Mey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haza, A.C., Özgökmen, T.M., Griffa, A. et al. Transport properties in small-scale coastal flows: relative dispersion from VHF radar measurements in the Gulf of La Spezia. Ocean Dynamics 60, 861–882 (2010). https://doi.org/10.1007/s10236-010-0301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0301-7

Keywords

Navigation