Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A computational model for assisting individuals with suicidal ideation based on context histories

  • Long Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

Roughly 800,000 people die from suicide yearly, with suicide being one of the leading causes of death worldwide. For every death by suicide, there are 20 people attempting suicide. Suicidal ideation is a precursor for suicide, thus requiring intervention. Technologies for detection and daily assisting for people who present suicidal ideation can mitigate the impacts of this disorder. In this sense, this work proposes S-Care, a computational model to assist patients who present suicidal ideation in daily lives. The scientific contributions of this work are: (1) integration with external data sources, namely, Intelligent Personal Assistants, patients’ phones, and social media; (2) daily assistance and tracking over time of patients’ Context Histories; (3) risk categories based on the probabilities of the classification; (4) a risk alert heuristic for suicidal ideation; (5) the S-Care Dataset Simulator for creation of suicidal ideation contexts; and (6) the Onto-SCare, an ontology that organizes the knowledge domain of the data analyzed by the model. S-Care analyzes the patients’ expressed thoughts, as well as the location and contact to who the individuals are talking. Furthermore, the model sends personalized alarms to the carers of the patients based on a Risk Alert Heuristic. Thereby, the carers can analyze the Context Information sent in the alerts to take fast actions to avoid any harm to the patients. The evaluation was carried out through simulated scenarios using the generated data from the S-Care Dataset Simulator tool. The experiments presented an average Accuracy of 84.15% for identifying suicidal ideation cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/PlataformaLifeUA/corpus/blob/master/reddit/gold_reddit_corpus_agree.csv.

  2. https://raw.githubusercontent.com/ayaanzhaque/SDCNL/main/data/combined-set.csv.

References

  1. Alambo, A., Gaur, M., Lokala, U., et al.: Question answering for suicide risk assessment using reddit. In: 2019 IEEE 13th International Conference on Semantic Computing (ICSC), pp 468–473 (2019). https://doi.org/10.1109/ICOSC.2019.8665525

  2. Ansari, L., Ji, S., Chen, Q., et al.: Ensemble hybrid learning methods for automated depression detection. In: IEEE Transactions on Computational Social Systems, pp. 1–9 (2022). https://doi.org/10.1109/TCSS.2022.3154442

  3. Aranda, J.A.S., Dias, L.P.S., Barbosa, J.L.V., et al.: Collection and analysis of physiological data in smart environments: a systematic mapping. J. Ambient Intell. Humaniz. Comput. 11(7), 2883–2897 (2020). https://doi.org/10.1007/s12652-019-01409-9

    Article  Google Scholar 

  4. Aranda, J.A.S., Bavaresco, R.S., de Carvalho, J.V., et al.: A computational model for adaptive recording of vital signs through context histories. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03126-8

    Article  Google Scholar 

  5. Bantilan, N., Malgaroli, M., Ray, B., et al.: Just in time crisis response: suicide alert system for telemedicine psychotherapy settings. Psychother. Res. 31(3), 289–299 (2021). https://doi.org/10.1080/10503307.2020.1781952

    Article  Google Scholar 

  6. Bavaresco, R., Barbosa, J., Vianna, H., et al.: Design and evaluation of a context-aware model based on psychophysiology. Comput. Methods Programs Biomed. 189(105), 299 (2020). https://doi.org/10.1016/j.cmpb.2019.105299

    Article  Google Scholar 

  7. Borges, G., Nock, M.K., Abad, J.M.H., et al.: Twelve-month prevalence of and risk factors for suicide attempts in the world health organization world mental health surveys. J. Clin. Psychiatry (2010). https://doi.org/10.4088/jcp.08m04967blu

    Article  Google Scholar 

  8. Boukil, S., El Adnani, F., Cherrat, L., et al.: Deep learning algorithm for suicide sentiment prediction. Adv. Intell. Syst. Comput. 914, 261–272 (2019). https://doi.org/10.1007/978-3-030-11884-6_24

    Article  Google Scholar 

  9. Caicedo, A., Soriano, G., Sasieta, M.: Assessment of supervised classifiers for the task of detecting messages with suicidal ideation. Heliyon 6(8), 1–9 (2020). https://doi.org/10.1016/j.heliyon.2020.e04412

    Article  Google Scholar 

  10. Cambria, E., Hussain, A., Durrani, T., et al.: Sentic computing for patient centered applications. In: IEEE 10th International Conference on Signal Processing Proceedings, pp. 1279–1282 (2010). https://doi.org/10.1109/ICOSP.2010.5657072

  11. Cambria, E., Benson, T., Eckl, C., et al.: Sentic proms: Application of sentic computing to the development of a novel unified framework for measuring health-care quality. Expert Syst. Appl. 39(12), 10533–10543 (2012). https://doi.org/10.1016/j.eswa.2012.02.120

    Article  Google Scholar 

  12. Cao, L., Zhang, H., Feng, L.: Building and using personal knowledge graph to improve suicidal ideation detection on social media. IEEE Trans. Multimed. (2020). https://doi.org/10.1109/TMM.2020.3046867

    Article  Google Scholar 

  13. Chen, Q., Chaturvedi, I., Ji, S., et al.: Sequential fusion of facial appearance and dynamics for depression recognition. Pattern Recognit. Lett. 150, 115–121 (2021). https://doi.org/10.1016/j.patrec.2021.07.005

    Article  Google Scholar 

  14. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2), 97–166 (2001). https://doi.org/10.1207/S15327051HCI16234_02

    Article  Google Scholar 

  15. Dias, L.P.S., Barbosa, J.L.V., Feijó, L.P., et al.: Development and testing of iAware model for ubiquitous care of patients with symptoms of stress, anxiety and depression. Comput. Methods Programs Biomed. 187(105), 113 (2020). https://doi.org/10.1016/j.cmpb.2019.105113

    Article  Google Scholar 

  16. Dogrucu, A., Perucic, A., Isaro, A., et al.: Moodable: on feasibility of instantaneous depression assessment using machine learning on voice samples with retrospectively harvested smartphone and social media data. Smart Health 17(100), 118 (2020). https://doi.org/10.1016/j.smhl.2020.100118

    Article  Google Scholar 

  17. Doran, C., Kinchin, I.: Economic and epidemiological impact of youth suicide in countries with the highest human development index. Plos One 15(5), 1–11 (2020). https://doi.org/10.1371/journal.pone.0232940

    Article  Google Scholar 

  18. Filippetto, A.S., Lima, R., Barbosa, J.L.V.: A risk prediction model for software project management based on similarity analysis of context histories. Inf. Softw. Technol. 131(106), 497 (2021). https://doi.org/10.1016/j.infsof.2020.106497

    Article  Google Scholar 

  19. Fodeh, S., Li, T., Menczynski, K., et al.: Using machine learning algorithms to detect suicide risk factors on twitter. In: 2019 International Conference on Data Mining Workshops, pp. 941–948 (2019). https://doi.org/10.1109/ICDMW.2019.00137

  20. Fowler, C.N., Kott, K., Wicks, M.N., et al.: Self-efficacy and sleep among caregivers of older adults with dementia: effect of an interprofessional virtual healthcare neighborhood. J. Gerontol. Nurs. 4(11), 39–47 (2016). https://doi.org/10.3928/00989134-20160901-02

    Article  Google Scholar 

  21. Gaur, M., Alambo, A., Sain, J.P., et al.: Knowledge-aware assessment of severity of suicide risk for early intervention. In: The World Wide Web Conference. Association for Computing Machinery, New York, pp. 514–525 (2019). https://doi.org/10.1145/3308558.3313698

  22. Gomes, J.Z., Victória Barbosa, J.L., Geyer, C.F.R., et al.: Ubiquitous intelligent services for vehicular users: a systematic mapping. Interact. Comput. 31(5), 465–479 (2020). https://doi.org/10.1093/iwcomp/iwz030

    Article  Google Scholar 

  23. Gusenbauer, M., Haddaway, N.R.: Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 11(2), 181–217 (2020). https://doi.org/10.1002/jrsm.1378

    Article  Google Scholar 

  24. Haque, A., Reddi, V., Giallanza, T.: Deep learning for suicide and depression identification with unsupervised label correction (2021). arXiv:https://arxiv.org/abs/arXiv:2102.09427v2

  25. Heckler, W.F., de Carvalho, J.V., Barbosa, J.L.V.: Machine learning for suicidal ideation identification: a systematic literature review. Comput. Hum. Behav. (2021). https://doi.org/10.1016/j.chb.2021.107095

    Article  Google Scholar 

  26. Ji, S., Li, X., Huang, Z., et al.: Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput. Appl. 34(13), 10309–10319 (2021). https://doi.org/10.1007/s00521-021-06208-y

    Article  Google Scholar 

  27. Ji, S., Pan, S., Li, X., et al.: Suicidal ideation detection: a review of machine learning methods and applications. IEEE Trans. Comput. Soc. Syst. 8(1), 214–226 (2021). https://doi.org/10.1109/TCSS.2020.3021467

    Article  Google Scholar 

  28. Kozak, J.: Decision Tree and Ensemble Learning Based on Ant Colony Optimization, vol. 781. Springer, New York (2019)

    Google Scholar 

  29. Kumar, E.R., Rao, K.R., Nayak, S.R., et al.: Suicidal ideation prediction in twitter data using machine learning techniques. J. Interdiscip. Math. 23(1), 117–125 (2020). https://doi.org/10.1080/09720502.2020.1721674

    Article  Google Scholar 

  30. Lima, R., Filippetto, A.S., Heckler, W.F., et al.: Towards ubiquitous requirements engineering through recommendations based on context histories. PeerJ Comput. Sci. 8(e794), 1–30 (2022). https://doi.org/10.7717/peerj-cs.794

    Article  Google Scholar 

  31. Liu, R., Bettis, A., Burke, T.: Characterizing the phenomenology of passive suicidal ideation: a systematic review and meta-analysis of its prevalence, psychiatric comorbidity, correlates, and comparisons with active suicidal ideation. Psychol. Med. (2019). https://doi.org/10.1017/S003329171900391X

    Article  Google Scholar 

  32. Machado, S.D., Tavares, J.E., Martins, M.G., et al.: Ambient intelligence based on IoT for assisting people with Alzheimer’s disease through context histories. Electronics 10(11), 1–19 (2021). https://doi.org/10.20944/preprints202105.0018.v1

    Article  Google Scholar 

  33. Mayee, M.K., Deepa, T.: A computational approach to include extraction for recognizable proof of self-destructive ideation in tweets. In: 2020 Fourth International Conference on Inventive Systems and Control (ICISC), pp. 912–918 (2020). https://doi.org/10.1109/ICISC47916.2020.9171077

  34. Mishra, R., Prakhar Sinha, P., Sawhney, R., et al.: SNAP-BATNET: Cascading author profiling and social network graphs for suicide ideation detection on social media. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop. Association for Computational Linguistics, Minneapolis, Minnesota, pp. 147–156 (2019). https://doi.org/10.18653/v1/N19-3019

  35. Narynov, S., Mukhtarkhanuly, D., Kerimov, I., et al.: Comparative analysis of supervised and unsupervised learning algorithms for online user content suicidal ideation detection. J. Theor. Appl. Inf. Technol. 97(22), 3304–3317 (2019)

    Google Scholar 

  36. O’Connor, R., Nock, M.: The psychology of suicidal behaviour. Lancet Psychiatry (2014). https://doi.org/10.1016/s2215-0366(14)70222-6

    Article  Google Scholar 

  37. Patel, V., Shah, H., Farooqui, Y.: Hybrid feature based prediction of suicide related activity on twitter. In: 2020 4th International Conference on Intelligent Computing and Control Systems, pp. 590–595 (2020). https://doi.org/10.1109/ICICCS48265.2020.9120876

  38. Paula, L., Barbosa, J.L.V., Dias, L.P.S.: A model for assisting in the treatment of anxiety disorder. Univ. Access Inf. Soc. 21(2), 533–543 (2021). https://doi.org/10.1007/s10209-020-00786-9

    Article  Google Scholar 

  39. Pestian, J., Santel, D., Sorter, M., et al.: A machine learning approach to identifying changes in suicidal language. Am. Assoc. Suicidol. 50(5), 939–947 (2020). https://doi.org/10.1111/sltb.12642

    Article  Google Scholar 

  40. Petry, M.M., Barbosa, J.L.V., Rigo, S.J., et al.: Toward a ubiquitous model to assist the treatment of people with depression. Univ. Access Inf. Soc. 19(4), 841–854 (2019). https://doi.org/10.1007/s10209-019-00697-4

    Article  Google Scholar 

  41. Radford, A., Wu, J., Child, R., et al.: Language Models are Unsupervised Multitask Learners. Tech. rep, OpenAI (2019)

    Google Scholar 

  42. Ramírez-Cifuentes, D., Freire, A., Baeza-Yates, R., et al.: Detection of suicidal ideation on social media: multimodal, relational, and behavioral analysis. J. Med. Internet Res. 22(7), 1–16 (2020). https://doi.org/10.2196/17758

    Article  Google Scholar 

  43. Reis, E.S.D., Costa, C.A.D., Silveira, D.E.D., et al.: Transformers aftermath. Commun. ACM 64(4), 154–163 (2021). https://doi.org/10.1145/3430937

    Article  Google Scholar 

  44. Robinson, J., Bailey, E., Witt, K., et al.: What works in youth suicide prevention? A systematic review and meta-analysis. EClinicalMedicine 4(5), 52–91 (2018). https://doi.org/10.1016/j.eclinm.2018.10.004

    Article  Google Scholar 

  45. Rosa, J., Barbosa, J., Ribeiro, G.: Oracon: an adaptive model for context prediction. Expert Syst. Appl. 45, 56–70 (2016). https://doi.org/10.1016/j.eswa.2015.09.016

    Article  Google Scholar 

  46. Roy, A., Nikolitch, K., McGinn, R., et al.: A machine learning approach predicts future risk to suicidal ideation from social media data. Digit. Med. 3(78), 1–12 (2020). https://doi.org/10.1038/s41746-020-0287-6

    Article  Google Scholar 

  47. SAP: Standardized technical architecture e modeling - conceptual and design level. Available on: (2007). http://www.fmc-modeling.org/download/fmc-and-tam/SAP-TAM/Standard.pdf. Accessed 29 Mar 2021

  48. Sarsam, S.M., Al-Samarraie, H., Alzahrani, A.I., et al.: A lexicon-based approach to detecting suicide-related messages on twitter. Biomed. Signal Process. Control 65, 1–8 (2021). https://doi.org/10.1016/j.bspc.2020.102355

    Article  Google Scholar 

  49. Shah, F.M., Haque, F., Nur, RU., et al.: A hybridized feature extraction approach to suicidal ideation detection from social media post. In: IEEE Region 10 Symposium, pp 985–988 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230733

  50. Sigg, S.: Development of a Novel Context Prediction Algorithm and Analysis of Context Prediction Schemes. Kassel University Press, Kassel (2008)

    Google Scholar 

  51. Silva, A., Gomes, M.M., da Costa, C.A., et al.: Intelligent personal assistants: a systematic literature review. Expert Syst. Appl. 147(113), 193 (2020). https://doi.org/10.1016/j.eswa.2020.113193

    Article  Google Scholar 

  52. Sinha, P.P., Mishra, R., Sawhney, R., et al.: suicidal - a multipronged approach to identify and explore suicidal ideation in Twitter. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Association for Computing Machinery, New YorkCIKM ’19, pp. 941–950 (2019). https://doi.org/10.1145/3357384.3358060

  53. Tadesse, M.M., Lin, H., Xu, B., et al.: Detection of suicide ideation in social media forums using deep learning. Algorithms 13(1), 1–19 (2020). https://doi.org/10.3390/a13010007

    Article  Google Scholar 

  54. Turecki, G., Brent, D.A., Gunnell, D., et al.: Suicide and suicide risk. Nat. Rev. Dis. Primers 5(74), 1–22 (2019). https://doi.org/10.1038/s41572-019-0121-0

    Article  Google Scholar 

  55. Vajjala, S., Majumder, B., Gupta, A., et al.: Practical Natural Language Processing: A comprehensive Guide to Building Real-World NLP Systems, vol. 1. O’Reilly, Sebastopol (2020)

    Google Scholar 

  56. Valeriano, K., Condori-Larico, A., Sulla-Torres, J.: Detection of suicidal intent in Spanish language social networks using machine learning. Int. J. Adv. Comput. Sci. Appl. 11(4), 1–9 (2020). https://doi.org/10.14569/IJACSA.2020.0110489

    Article  Google Scholar 

  57. World Health Organization: National suicide prevention strategies: progress, examples and indicators (2018).https://apps.who.int/iris/bitstream/handle/10665/279765/9789241515016-eng.pdf. Accessed 06 Sept 2021

  58. World Health Organization: Suicide data (2021). https://www.who.int/teams/mental-health-and-substance-use/suicide-data. Accessed 06 Sept 2021

  59. Yao, H., Rashidian, S., Duanmu, H., et al.: Detection of suicidality among opioid users on reddit: machine learning-based approach. J. Med. Internet Res. 22(11), 1–19 (2020). https://doi.org/10.2196/15293

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge FAPERGS/Brazil (Foundation for the Supporting of Research in the State of Rio Grande do Sul), CNPq/Brazil (National Council for Scientific and Technological Development), and CAPES/Brazil (Coordination for the Improvement of Higher Education Personnel). We would also like to thank the University of Vale do Rio dos Sinos (UNISINOS) for embracing this research.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesllei F. Heckler.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentz, D.M., Heckler, W.F. & Barbosa, J.L.V. A computational model for assisting individuals with suicidal ideation based on context histories. Univ Access Inf Soc 23, 1447–1466 (2024). https://doi.org/10.1007/s10209-023-00991-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-023-00991-2

Keywords

Navigation