Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Complexity of Linear Circuits and Geometry

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We use algebraic geometry to study matrix rigidity and, more generally, the complexity of computing a matrix–vector product, continuing a study initiated in Kumar et al. (2009), Landsberg et al. (preprint). In particular, we (1) exhibit many non-obvious equations testing for (border) rigidity, (2) compute degrees of varieties associated with rigidity, (3) describe algebraic varieties associated with families of matrices that are expected to have super-linear rigidity, and (4) prove results about the ideals and degrees of cones that are of interest in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paolo Aluffi, Degrees of projections of rank loci, preprint arXiv:1408.1702.

  2. E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985.

  3. Bruno Codenotti, Matrix rigidity, Linear Algebra Appl. 304 (2000), no. 1–3, 181–192.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ronald de Wolf, Lower bounds on matrix rigidity via a quantum argument, Automata, languages and programming. Part I, Lecture Notes in Comput. Sci., vol. 4051, Springer, Berlin, 2006, pp. 62–71.

  5. Zeev Dvir, On matrix rigidity and locally self-correctable codes, Comput. Complexity 20 (2011), no. 2, 367–388.

    Article  MathSciNet  MATH  Google Scholar 

  6. Joel Friedman, A note on matrix rigidity, Combinatorica 13 (1993), no. 2, 235–239.

    Article  MathSciNet  MATH  Google Scholar 

  7. William Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998.

  8. William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.

  9. Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995, A first course, Corrected reprint of the 1992 original.

  10. B. S. Kashin and A. A. Razborov, New lower bounds for the stability of Hadamard matrices, Mat. Zametki 63 (1998), no. 4, 535–540.

    Article  MathSciNet  MATH  Google Scholar 

  11. Abhinav Kumar, Satyanarayana V. Lokam, Vijay M. Patankar, and Jayalal Sarma M. N., Using elimination theory to construct rigid matrices, Foundations of software technology and theoretical computer science—FSTTCS 2009, LIPIcs. Leibniz Int. Proc. Inform., vol. 4, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2009, pp. 299–310.

  12. J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012.

    Google Scholar 

  13. J. M. Landsberg, J. Taylor, and N. K. Vishnoi, The geometry of matrix rigidity (preprint). https://smartech.gatech.edu/handle/1853/6514.

  14. F. Thomson Leighton, Introduction to parallel algorithms and architectures, Morgan Kaufmann, San Mateo, CA, 1992, Arrays, trees, hypercubes.

  15. Satyanarayana V. Lokam, On the rigidity of Vandermonde matrices, Theoret. Comput. Sci. 237 (2000), no. 1-2, 477–483.

    Article  MathSciNet  MATH  Google Scholar 

  16. Satyanarayana V. Lokam, Spectral methods for matrix rigidity with applications to size-depth trade-offs and communication complexity, J. Comput. System Sci. 63 (2001), no. 3, 449–473.

    Article  MathSciNet  MATH  Google Scholar 

  17. Satyanarayana V. Lokam, Quadratic lower bounds on matrix rigidity, Theory and applications of models of computation, Lecture Notes in Comput. Sci., vol. 3959, Springer, Berlin, 2006, pp. 295–307.

  18. Satyanarayana V. Lokam, Complexity lower bounds using linear algebra, Found. Trends Theor. Comput. Sci. 4 (2008), no. 1-2, front matter, 1–155 (2009).

  19. Meena Mahajan and Jayalal Sarma M. N., Rigidity of a simple extended lower triangular matrix, Inform. Process. Lett. 107 (2008), no. 5, 149–153.

    Article  MathSciNet  MATH  Google Scholar 

  20. David Mumford, Algebraic geometry. I, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Complex projective varieties, Reprint of the 1976 edition.

  21. David Mumford, The red book of varieties and schemes, expanded ed., Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1999, Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello.

  22. Nicholas Pippenger, Superconcentrators, SIAM J. Comput. 6 (1977), no. 2, 298–304.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pavel Pudlák and Zdeněk Vavřín, Computation of rigidity of order \(n^2/r\) for one simple matrix, Comment. Math. Univ. Carolin. 32 (1991), no. 2, 213–218.

    MathSciNet  MATH  Google Scholar 

  24. M. A. Shokrollahi, D. A. Spielman, and V. Stemann, A remark on matrix rigidity, Inform. Process. Lett. 64 (1997), no. 6, 283–285.

    Article  MathSciNet  Google Scholar 

  25. Richard P. Stanley, Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012.

  26. Harry Tamvakis, The connection between representation theory and Schubert calculus, Enseign. Math 50 (2004), no. 3-4, 267–286.

    MathSciNet  MATH  Google Scholar 

  27. Leslie G. Valiant, Graph-theoretic arguments in low-level complexity, Mathematical foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977), Springer, Berlin, 1977, pp. 162–176. Lecture Notes in Comput. Sci., Vol. 53.

Download references

Acknowledgments

We thank the anonymous referees for very careful reading and numerous useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Landsberg.

Additional information

Communicated by Stephen Cook.

Hauenstein was supported by NSF Grant DMS-1262428 and DARPA Young Faculty Award (YFA). Landsberg supported by NSF Grant DMS-1006353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gesmundo, F., Hauenstein, J.D., Ikenmeyer, C. et al. Complexity of Linear Circuits and Geometry. Found Comput Math 16, 599–635 (2016). https://doi.org/10.1007/s10208-015-9258-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9258-8

Keywords

Mathematics Subject Classification

Navigation