Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We study the numerical integration of functions depending on an infinite number of variables. We provide lower error bounds for general deterministic algorithms and provide matching upper error bounds with the help of suitable multilevel algorithms and changing-dimension algorithms. More precisely, the spaces of integrands we consider are weighted, reproducing kernel Hilbert spaces with norms induced by an underlying anchored function space decomposition. Here the weights model the relative importance of different groups of variables. The error criterion used is the deterministic worst-case error. We study two cost models for function evaluations that depend on the number of active variables of the chosen sample points, and we study two classes of weights, namely product and order-dependent weights and the newly introduced finite projective dimension weights. We show for these classes of weights that multilevel algorithms achieve the optimal rate of convergence in the first cost model while changing-dimension algorithms achieve the optimal convergence rate in the second model. As an illustrative example, we discuss the anchored Sobolev space with smoothness parameter \(\alpha \) and provide new optimal quasi-Monte Carlo multilevel algorithms and quasi-Monte Carlo changing-dimension algorithms based on higher-order polynomial lattice rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [10] it was actually called “variable subspace sampling model”. We have chosen a different name to emphasize the difference between this model and the “unrestricted subspace sampling model” explained below.

  2. In [36] the cost model did not receive a specific name.

  3. We chose this notion since it seems to us to be consistent with the common notion of tractability in the multivariate setting. A more precise notion would be strongly polynomially tractable, to distinguish this kind of tractability from more general notions of tractability as introduced in [27]; see also [42]. But for convenience we stay with the shorter notion of strongly tractable.

  4. Recall that polynomial lattice rules consist of \(n\) points, where \(n\) is a power of a prime \(b\). If required to construct a quadrature rule consisting of \(n\) points, \(n\in \mathbb {N}\) arbitrary, we generate a polynomial lattice rule consisting of \(b^m\) points, \(b^m\le n <b^{m+1}\), and simply set the quadrature weights corresponding to the “missing” \(n-b^m\) points to zero.

References

  1. K. Appel, W. Haken, Every planar map is four colorable, I. Discharging, Illinois J. Math. 21 (1977), 429–490.

    MathSciNet  MATH  Google Scholar 

  2. K. Appel, W. Haken, Every planar map is four colorable, II. Reducibility, Illinois J. Math. 21 (1977), 491–567.

    MathSciNet  MATH  Google Scholar 

  3. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Baldeaux, Scrambled polynomial lattice rules for infinite-dimensional integration, in: L. Plaskota, H. Woźniakowski (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2010, 255–263, Springer, Heidelberg, 2012.

  5. J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens, F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules, Numer. Algorithms 59 (2012), 403–431.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Baldeaux, J. Dick, J. Greslehner, F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules, J. Complexity 27 (2011), 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Baldeaux, M. Gnewuch, Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. arXiv:1209.0882v1 [math.NA], Preprint 2012. To appear. In: SIAM J. Numer. Anal.

  8. J. M. Borwein, D. M. Bradley, D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k. The Wilf Festschrift (Philadelphia, PA, 1996), Electron. J. Combin. 4 (1997), no. 2, Research Paper 5, approx. 21 pp.

  9. H.E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17–31.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Creutzig, S. Dereich, T. Müller-Gronbach, K. Ritter, Infinite-dimensional quadrature and approximation of distributions, Found. Comput. Math. 9 (2009), 391–429.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal. 46 (2008), 1519–1553.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Dick, The decay of the Walsh coefficients of smooth functions, Bull. Austral. Math. Soc. 80 (2009), 430–453.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Dick, M. Gnewuch, Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. J. Approx. Theory (2013, to appear).

  14. J. Dick, F. Y. Kuo, F. Pillichshammer, I. H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration, Math. Comp. 74 (2005), 1895–1921.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Dick, F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules, J. Complexity 23 (2007), 436–453.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Dick, F. Pillichshammer, Digital nets and sequences. Discrepancy Theory and quasi-Monte Carlo integration, Cambridge University Press, Cambridge, 2010.

  17. J. Dick, I. H. Sloan, X. Wang, H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights, Numer. Math. 103 (2006), 63–97.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Diestel, Graph Theory, Springer Verlag, Berlin, Heidelberg, 3rd Edition, 2005.

  19. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), 607–617.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. B. Giles. Improved multilevel Monte Carlo convergence using the Milstein scheme, in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, 343–358, Springer, Berlin, 2008.

  22. M. B. Giles, B. J. Waterhouse, Multilevel quasi-Monte Carlo path simulation, Radon Ser. Comput. Appl. Math. 8 (2009), 165–181.

    MathSciNet  Google Scholar 

  23. M. Gnewuch, Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces, J. Complexity 28 (2012), 2–17.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Gnewuch, Infinite-dimensional integration on weighted Hilbert spaces, Math. Comp. 81 (2012), 2175–2205.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Gnewuch. Lower error bounds for randomized multilevel and changing dimension algorithms. In: J. Dick, F. Y. Kuo, G. W. Peters, I. H. Sloan (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2012, 399–415, Springer, Heidelberg, 2013.

  26. M. Gnewuch, S. Mayer, K. Ritter, On weighted Hilbert spaces and integration of functions of infinitely many variables, J. Complexity 30 (2014), 29–47.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Gnewuch, H. Woźniakowski, Generalized tractability for multivariate problems, Part I: Linear tensor product problems and linear information, J. Complexity 23 (2007), 262–295.

    Article  MATH  Google Scholar 

  28. M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance, J. Complexity 26 (2010), 455–489.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complexity 14 (1998), 151–175.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Heinrich, E. Sindambiwe. Monte Carlo complexity of parametric integration, J. Complexity 15 (1999), 317–341.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. J. Hickernell, T. Müller-Gronbach, B. Niu, K. Ritter, Multi-level Monte Carlo algorithms for infinite-dimensional integration on \(\mathbb{R}^{\mathbb{N}}\), J. Complexity 26 (2010), 229–254.

    Article  MATH  Google Scholar 

  32. F. J. Hickernell, X. Wang, The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension, Math. Comp. 71 (2001), 1641–1661.

    Article  MathSciNet  Google Scholar 

  33. F. Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces, J. Complexity 19 (2003), 301–320.

    Article  MATH  Google Scholar 

  34. F. Y. Kuo, C. Schwab, I. H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal. 50 (2012), 3351–3374.

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Y. Kuo, C. Schwab, I. H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, preprint 2012.

  36. F. Y. Kuo, I. H. Sloan, G. Wasilkowski, H. Woźniakowski, Liberating the dimension, J. Complexity 26 (2010), 422–454.

    Article  MATH  Google Scholar 

  37. F. Y. Kuo, I. H. Sloan, G. Wasilkowski, H. Woźniakowski, On decompositions of multivariate functions, Math. Comp. 79 (2010), 953–966.

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J. 42 (1992), 143–166.

    MathSciNet  MATH  Google Scholar 

  39. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.

  40. B. Niu, F. J. Hickernell, Monte Carlo simulation of stochastic integrals when the cost of function evaluations is dimension dependent, in: P. L’Ecuyer, A. B. Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, 545–560, Springer, Heidelberg, 2009.

  41. B. Niu, F. J. Hickernell, T. Müller-Gronbach, K. Ritter, Deterministic multi-level algorithms for infinite-dimensional integration on \(\mathbb{R}^n\), J. Complexity 27 (2011), 331–351.

    Article  MATH  Google Scholar 

  42. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I, European Mathematical Society, Zürich, 2008.

  43. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume II, European Mathematical Society, Zürich, 2010.

  44. L. Plaskota, G. W. Wasilkowski, Tractability of infinite-dimensional integration in the worst case and randomized settings, J. Complexity 27 (2011), 505–518.

    Article  MathSciNet  MATH  Google Scholar 

  45. I. H. Sloan, X. Wang, H. Woźniakowski, Finite-order weights imply tractability of multivariate integration, J. Complexity 20 (2004), 46–74.

    Article  MATH  Google Scholar 

  46. I. H. Sloan, H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?, J. Complexity 14 (1998), 1–33.

    Article  MATH  Google Scholar 

  47. V. N. Temlyakov, Cubature formulas, discrepancy, and nonlinear approximation. Numerical integration and its complexity (Oberwolfach, 2001). J. Complexity 19 (2003), 352–391.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. F. Traub, G. W. Wasilkowski, H. Woźniakowski, Information-Based Complexity, Academic Press, New York, 1988.

  49. J.L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math. 55 (1923), 5–24.

    Article  Google Scholar 

  50. G. W. Wasilkowski, Liberating the dimension for \(L_2\)-approximation, J. Complexity 28 (2012), 304–319.

    Article  MathSciNet  MATH  Google Scholar 

  51. G. W. Wasilkowski, H. Woźniakowski, On tractability of path integration, J. Math. Physics 37 (1996), 2071–2088.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We want to thank Michael Griebel for suggesting that we study algorithms for infinite-dimensional integration of higher-order convergence. We are grateful for the opportunity to work at the Hausdorff Institute in Bonn, where the work on this paper was initiated. Furthermore, we want to thank Greg Wasilkowski, Henryk Woźniakowski, and two anonymous referees for valuable comments. Josef Dick is supported by an ARC Queen Elizabeth II Fellowship. Michael Gnewuch was supported by the German Science Foundation DFG under Grant GN 91/3-1 and by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Dick.

Appendix

Appendix

Here we provide a detailed proof of Lemma 6.

Lemma 8

Let \(r \!>\! 1\) be a real number, and define the POD weights \(\gamma _u \!=\! \Gamma _{|u|} \prod _{j\in u} j^{-r}\) for \(u \in {\mathcal {U}}\). Then there is a constant \(c_r > 0\) such that

$$\begin{aligned} \sum _{u \in {\mathcal {U}}} \gamma _u \ge \Gamma _0 + c_r \sum _{k=1}^\infty \frac{\Gamma _k}{(k!)^{2 \lceil r/2 \rceil }} k^{-\lceil r/2 \rceil } \left( \frac{\pi }{2 \lceil r/2 \rceil \sin \pi / (2 \lceil r/2 \rceil ) } \right) ^{rk}. \end{aligned}$$
(61)

If \(r \ge 2\), then there is a constant \(C_r > 0\) such that

$$\begin{aligned} \sum _{u \in {\mathcal {U}}} \gamma _u \le \Gamma _0 + C_r \sum _{k=1}^\infty \frac{\Gamma _k}{(k!)^r} k^{-r/2} \left( \frac{\pi }{2 \lfloor r/2 \rfloor \sin \pi / (2 \lfloor r/2 \rfloor ) }\right) ^{rk}. \end{aligned}$$
(62)

Note that \(\sin x < x\) for \(x > 0\); thus, \(\sin \pi /r < \pi /r\), which implies

$$\begin{aligned} 1 < \frac{\pi }{r \sin \pi /r}. \end{aligned}$$

Proof

We have

$$\begin{aligned}&\sum _{u \in {\mathcal {U}}} \gamma _u = \sum _{k=0}^\infty \Gamma _{k} \sum _{\mathop {\scriptstyle {|u| = k}}\limits ^{\scriptstyle {u \in {\mathcal {U}}}}} \prod _{j\in u} j^{-r} = \Gamma _0 + \sum _{k=1}^\infty \Gamma _{k} \sum _{1 \le j_1 < j_2 < \cdots < j_k} \prod _{i=1}^k j_i^{-r} \\&\quad = \Gamma _0 + \sum _{k=1}^\infty \Gamma _k \zeta (\underbrace{r,\ldots , r}_{k \text{ times }}), \end{aligned}$$

where \(\zeta (\underbrace{r,\ldots , r}_{k \text{ times }})\) is the multiple Hurwitz zeta function.

The general behavior of the multiple Hurwitz zeta function is given in [8, Eq. (48)]. From [8, p. 8] it is known that if \(r \ge 2\) is an even integer, then

$$\begin{aligned} \zeta (\underbrace{r,\ldots , r}_{k \text{ times }}) = \frac{r (2\pi )^{rk}}{(rk + r/2)!} \left( \frac{1}{2 \sin \pi /r} \right) ^{rk+r/2} \left( 1 + \sum _{j=2}^{N_{r}} R_{r,j}^{rk+r/2} \right) , \end{aligned}$$

where \(R_{r,j}\) are some numbers with \(|R_{r,j}| < 1\) and \(N_{r}\) is a positive integer satisfying \(N_r < 2^{r/2}/r\). From Stirling’s formula we obtain

$$\begin{aligned} \frac{(k!)^r}{(rk)!} \asymp _k \frac{\sqrt{2\pi }}{\mathrm {e}} \frac{k^{kr} \mathrm {e}^{-rk}}{(rk)^{rk} \mathrm {e}^{-rk}} = \frac{\sqrt{2\pi }}{\mathrm {e}} r^{-rk}, \end{aligned}$$

where \(f(k) \asymp _k g(k)\) means that there are constants \(C,c> 0\) independent of \(k\) such that \(c g(k) \le f(k) \le C g(k)\). Thus,

$$\begin{aligned} (k!)^r \zeta (\underbrace{r,\ldots , r}_{k \text{ times }})&= \frac{(k!)^r r (2\pi )^{rk}}{(rk + r/2)!} \left( \frac{1}{2 \sin \pi /r} \right) ^{rk+r/2} \left( 1 + \sum _{j=2}^{N_{r}} R_{r,j}^{rk+r/2} \right) \\&\quad \asymp _k \frac{\sqrt{2\pi } r}{\mathrm {e}} \left( \frac{1}{2\sin \pi /r} \right) ^{r/2} \frac{1}{(rk+r/2)^{r/2}} \left( \frac{\pi }{r \sin \pi /r} \right) ^{rk}\\&\quad \times \, \left( 1 + \sum _{j=2}^{N_{r}} R_{r,j}^{rk+r/2} \right) \asymp _k \frac{1}{k^{r/2}} \left( \frac{\pi }{r \sin \pi /r} \right) ^{rk}. \end{aligned}$$

Thus, for any fixed positive even integer \(r\) we have

$$\begin{aligned} \sum _{k=1}^\infty \Gamma _k \zeta (\underbrace{r,\ldots , r}_{k \text{ times }}) = \sum _{k=1}^\infty \frac{\Gamma _k}{(k!)^r} (k!)^r \zeta (\underbrace{r,\ldots , r}_{k \text{ times }}) \asymp \sum _{k=1}^\infty \frac{\Gamma _k}{(k!)^r} k^{-r/2} \left( \frac{\pi }{r \sin \pi /r}\right) ^{rk}. \end{aligned}$$

Therefore, (61) follows since decreasing \(r\) only increases the sum \(\sum _{u \in {\mathcal {U}}} \gamma _u\), and the result holds for all even integers \(r \ge 2\), as shown earlier.

Now assume that \(r \ge 2\). For \(1/r < \lambda \le 1\) we have by Jensen’s inequality that

$$\begin{aligned}{}[\zeta (r,\ldots , r)]^\lambda = \left[ \sum _{1\le j_1 < \cdots < j_k} \prod _{i=1}^k j_i^{-r} \right] ^\lambda \le \sum _{1 \le j_1 < \cdots < j_k} \prod _{i=1}^k j_i^{-r \lambda } = \zeta (r\lambda ,\ldots , r\lambda ). \end{aligned}$$

Choose \(1/r < \lambda \le 1\) such that \(\lambda r\) is the largest even integer less than or equal to \(r\). Then

$$\begin{aligned} (k!)^r \zeta (r,\ldots , r) \le \left[ (k!)^{\lambda r} \zeta (r\lambda ,\ldots , r\lambda )\right] ^{1/\lambda } \le C_r \frac{1}{k^{r/2}} \left( \frac{\pi }{\lambda r \sin \pi / (\lambda r)} \right) ^{rk} \end{aligned}$$

for some constant \(C_r > 0\). Thus,

$$\begin{aligned} \sum _{u \in {\mathcal {U}}} \gamma _u \le \Gamma _0 + C_r \sum _{k=1}^\infty \frac{\Gamma _k}{(k!)^r} k^{-r/2} \left( \frac{\pi }{\lambda r \sin \pi / (\lambda r)} \right) ^{rk}, \end{aligned}$$

from which (62) follows. \(\square \)

Corollary 8

Let \(\varvec{\gamma }= (\gamma _u)_{u \in {\mathcal {U}}}\) be POD weights with \(\gamma _u = \Gamma _{|u|} \prod _{j\in u} \gamma _j\). Let \(p^*:={{\mathrm{decay}}}_{\varvec{\gamma },1} < \infty \). Further, let \(c, c_0 > 0\) be constants such that

$$\begin{aligned} c_0 j^{-p^*} \le \gamma _j \le c j^{-p^*} \quad \text{ for } \text{ all } j \ge 1. \end{aligned}$$

If for some \(q \le p^*/2\) we have

$$\begin{aligned} \sum _{k=1}^\infty \frac{c^{k/q} \Gamma _k^{1/q}}{(k!)^{p^*/q}} k^{-p^*/ (2q)} \left( \frac{\pi }{2 \lfloor p^*/(2q) \rfloor \sin \pi /(2 \lfloor p^*/ (2q) \rfloor } \right) ^{k p^*/q} < \infty , \end{aligned}$$
(63)

then \(\mathrm {decay}_{\varvec{\gamma },\infty } \ge q\).

On the other hand, if for \(q < p^*\) we have

$$\begin{aligned} \sum _{k=1}^\infty \frac{c_0^{k/q} \Gamma _k^{1/q}}{(k!)^{2 \lceil p^*/(2q) \rceil }} k^{-\lceil p^*/(2q) \rceil } \left( \frac{\pi }{2 \lceil p^*/(2q) \rceil \sin \pi / (2 \lceil p^*/(2q) \rceil ) } \right) ^{k p^*/q} = \infty , \end{aligned}$$
(64)

then \(\mathrm {decay}_{\varvec{\gamma },\infty } \le q\).

Proof

We have

$$\begin{aligned} \mathrm {decay}_{\varvec{\gamma },\infty } = \sup \left\{ q \in \mathbb {R}: \sum _{u \in {\mathcal {U}}} \gamma _u^{1/q} < \infty \right\} . \end{aligned}$$

Thus, we have for some \(q \le p^*/2\)

$$\begin{aligned}&\sum _{u \in {\mathcal {U}}} \gamma _u^{1/q} \le \Gamma _0^{1/q} + C_{p^*/q} \sum _{k=1}^\infty \frac{c^{k/q} \Gamma _k^{1/q}}{(k!)^{p^*/q}} k^{-p^*/ (2q)}\\&\quad \left( \frac{\pi }{2 \lfloor p^*/(2q) \rfloor \sin \pi /(2 \lfloor p^*/ (2q) \rfloor } \right) ^{k p^*/q} \end{aligned}$$

that the right-hand side is finite, then \(\mathrm {decay}_{\varvec{\gamma },\infty } \ge q\).

On the other hand, for \(q < p^*\) we have

$$\begin{aligned}&\sum _{u \in {\mathcal {U}}} \gamma _u^{1/q} \ge \Gamma _0^{1/q} + c_{p^*/q} \sum _{k=1}^\infty \frac{c_0^{k/q} \Gamma _k^{1/q}}{(k!)^{2 \lceil p^*/(2q) \rceil }} k^{-\lceil p^*/(2q) \rceil } \\&\quad \left( \frac{\pi }{2 \lceil p^*/(2q) \rceil \sin \pi / (2 \lceil p^*/(2q) \rceil ) } \right) ^{p^*k/q}. \end{aligned}$$

If the right-hand side is infinite for some \(q < p^*\), then \(\mathrm {decay}_{\varvec{\gamma },\infty } \le q\).

We suspect that the condition \(q \le p^*/2\) in the preceding Corollary can be replaced by \(q \le p^*\).

The preceding corollary allows us to construct an example of POD weights where

$$\begin{aligned} 1 \le \mathrm {decay}_{\varvec{\gamma },\infty } < \mathrm {decay}_{\varvec{\gamma },1}. \end{aligned}$$

For instance, let \(\gamma _j = j^{-p^*}\). Thus, \(\mathrm {decay}_{\varvec{\gamma },1} = p^*\) and \(c_0 = c = 1\) in the preceding corollary. Let \(q^*\) be such that \(p^*/(2q^*) \in \mathbb {N}\). For \(k \in \mathbb {N}_0\) let

$$\begin{aligned} \Gamma _k = (k!)^{p^*} k^{p^*/2-q^*} \left( \frac{(p^*/q^*) \sin (q^*\pi /p^*)}{\pi } \right) ^{k p^*}. \end{aligned}$$

Then we have for \(q=q^*\) that (64) is of the same form as (63), which is

$$\begin{aligned} \sum _{k=1}^\infty \frac{\Gamma _k^{1/q}}{(k!)^{p^*/q}} k^{-p^*/(2q)} \left( \frac{\pi }{2 \lfloor p^*/(2q) \rfloor \sin \pi / (2 \lfloor p^*/(2q) \rfloor ) } \right) ^{k p^*/q} = \sum ^\infty _{k=1} k^{-1}= \infty .\nonumber \\ \end{aligned}$$
(65)

Due to (64), we have \({{\mathrm{decay}}}_{\varvec{\gamma },\infty } \le q^*\).

Now let \(q<q^*\) such that \(\lfloor p^*/2q \rfloor = p^*/2q^*\). For this \(q\) the left-hand side of (63) is

$$\begin{aligned} \sum ^\infty _{k=1} \frac{\Gamma _k^{1/q}}{(k!)^{p^*/q}} k^{-p^*/2q} \left( \frac{\pi }{(p^*/q^*) \sin (q^*\pi /p^*)} \right) ^{kp^*/q} = \sum ^\infty _{k=1} k^{-q^*/q} <\infty . \end{aligned}$$

Thus, (63) gives us \({{\mathrm{decay}}}_{\varvec{\gamma },\infty } \ge q\).

Together with Lemma 3, this establishes Lemma 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dick, J., Gnewuch, M. Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence. Found Comput Math 14, 1027–1077 (2014). https://doi.org/10.1007/s10208-014-9198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9198-8

Keywords

Mathematics Subject Classification

Navigation