Abstract
Conjugated homopolymers based on six-member rings, e.g., polyfluorene, always exhibit blue emission and conjugated homopolymers based on five-member rings, e.g., polythiophene, can give red emission with low efficiency. In this work, we report a series of new conjugated homopolymers based on six-member rings with high-efficiency deep-red emission. The repeating units of the red light emitting homopolymers are double B←N bridged bipyridine (BNBP) with the boron atoms functionalized with diphenyl, borafluorene, and 2,7-di-tert-butyl-borafluorene groups, respectively. The relationship between the chemical structures and the opto-electronic properties of the monomers and the homopolymers has been systematically studied. The three polymers emit pure red light (λmax=656 nm) or deep red light (λmax=693 nm) with fluorescence quantum efficiency in solution higher than 60%. The polymers can be used as the emitters in solution-processed organic light-emitting diodes with red emission and decent device performance. This work indicates a new strategy to design highly efficient light emitting conjugated polymers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
The related data (DOI: 10.57760/sciencedb.j00189.00021) for this paper is available in the Data Repository of China Association for Science and Technology (https://www.scidb.cn/c/cjps).
References
Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.
Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611.
Wang, Z. B.; Helander, M. G.; Qiu, J.; Puzzo, D. P.; Greiner, M. T.; Hudson, Z. M.; Wang, S.; Liu, Z. W.; Lu, Z. H. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat. Photon. 2011, 5, 753–757.
Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832–1908.
Huang, W. Polymers for flexible electronics. Chinese J. Polym. Sci. 2022, 40, 1513–1514.
Murto, P.; Minotto, A.; Zampetti, A.; Xu, X.; Andersson, M. R.; Cacialli, F.; Wang, E. Triazolobenzothiadiazole-based copolymers for polymer light-emitting diodes: pure near-infrared emission via optimized energy and charge transfer. Adv. Opt. Mater. 2016, 4, 2068–2076.
Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016, 116, 13279–13412.
Tang, S.; Murto, P.; Xu, X.; Larsen, C.; Wang, E.; Edman, L. Intense and stable near-infrared emission from light-emitting electrochemical cells comprising a metal-free indacenodithieno[3,2-b]thiophene-based copolymer as the single emitter. Chem. Mat. 2017, 29, 7750–7759.
Bai, L.; Sun, C.; Han, Y.; Wei, C.; An, X.; Sun, L.; Sun, N.; Yu, M.; Zhang, K.; Lin, J.; Xu, M.; Xie, L.; Ling, H.; Cabanillas-Gonzales, J.; Song, L.; Hao, X.; Huang, W. Steric poly(diarylfluorene-co-benzothiadiazole) for efficient amplified spontaneous emission and polymer light-emitting diodes: benefit from preventing interchain aggregation and polaron formation. Adv. Opt. Mater. 2020, 8, 1901616.
Liu, Y.; Hua, L.; Yan, S.; Ren, Z. Halognnated π-conjugated polymeric emitters with thermally activated delayed fluorescence for highly efficient polymer light emitting diodes. Nano Energy 2020, 73, 104800.
Gon, M.; Wakabayashi, J.; Nakamura, M.; Tanaka, K.; Chujo, Y. Controlling energy gaps of pi-conjugated polymers by multi-fluorinated boron-fused azobenzene acceptors for highly efficient near-infrared emission. Chem. Asian J. 2021, 16, 696–703.
Guo, X.; Zhang, Y.; Hu, Y.; Yang, J.; Li, Y.; Ni, Z.; Dong, H.; Hu, W. Molecular weight engineering in high-performance ambipolar emissive mesopolymers. Angew. Chem. Int. Ed. 2021, 60, 14902–14908.
Wang, T.; Zou, Y.; Huang, Z.; Li, N.; Miao, J.; Yang, C. Narrowband emissive TADF conjugated polymers towards highly efficient solution-processible OLEDs. Angew. Chem. Int. Ed. 2022, 61, e202211172.
Li, X.; Yan, L.; Liu, S.; Wang, S.; Rao, J.; Zhao, L.; Tian, H.; Ding, J.; Wang, L. Polymerized thermally activated delayed-fluorescence small molecules: long-axis polymerization leads to a nearly concentration-independent luminescence. Angew. Chem. Int. Ed. 2023, 62, e202300529.
Nakamura, M.; Gon, M.; Tanaka, K.; Chujo, Y. Solid-state near-infrared emission of π-conjugated polymers consisting of boron complexes with vertically projected steric substituents. Macromolecules 2023, 56, 2709–2718.
He, Z. W.; Zhang, Q.; Li, C. X.; Han, H. T.; Lu, Y. Synthesis of thieno[3,4-b]pyrazine-based alternating conjugated polymers via direct arylation for near-infrared OLED applications. Chinese J. Polym. Sci. 2022, 40, 138–146.
Pei, Q.; Yang, Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 1996, 118, 7416–7417.
Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32, 5810–5817.
Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with light-emitting polymers. Adv. Mater. 2000, 12, 1737–1750.
Leclerc, M. Polyfluorenes: twenty years of progress. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2867–2873.
List, E. J. W.; Guentner, R.; Scanducci de Freitas, P.; Scherf, U. The effect of Keto defect sites on the emission properties of polyfluorene-type materials. Adv. Mater. 2002, 14, 374–378.
Wang, M.; Li, Y.; Xie, Z.; Wang, L. Polyfluorenes containing pyrazine units: synthesis, photophysics and electroluminescence. Sci. China Chem. 2011, 54, 656–665.
Sun, M. L.; Zhong, C. M.; Li, F.; Pei, Q. B. Purified polar polyfluorene for light-emitting diodes and light-emitting electrochemical cells. Chinese J. Polym. Sci. 2012, 30, 503–510.
Braun, D.; Gustafsson, G.; McBranch, D.; Heeger, A. J. Electroluminescence and electrical transport in poly(3-octylthiophene) diodes. J. Appl. Phys. 1992, 72, 564–568.
Ruseckas, A.; Namdas, E. B.; Theander, M.; Svensson, M.; Yartsev, A.; Zigmantas, D.; Andersson, M. R.; Inganäs, O.; Sundström, V. Luminescence quenching by inter-chain aggregates in substituted polythiophenes. J. Photochem. Photobiol. A-Chem. 2001, 144, 3–12.
Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J.-S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203.
Barbarella, G.; Melucci, M.; Sotgiu, G. The versatile thiophene: an overview of recent research on thiophene-based materials. Adv. Mater. 2005, 17, 1581–1593.
Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu, J.; Wang, L. An electron-deficient building block based on the B←N Unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436–1440.
Long, X.; Ding, Z.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Polymer acceptor based on double B←N bridged bipyridine (BNBP) unit for high-efficiency all-polymer solar cells. Adv. Mater. 2016, 28, 6504–6508.
Zhang, Z.; Miao, J.; Ding, Z.; Kan, B.; Lin, B.; Wan, X.; Ma, W.; Chen, Y.; Long, X.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 2019, 10, 3271.
Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mat. 2020, 32, 1308–1314.
Cao, X.; Li, H.; Hu, J.; Tian, H.; Han, Y.; Meng, B.; Liu, J.; Wang, L. An amorphous n-type conjugated polymer with an ultra-rigid planar backbone. Angew. Chem. Int. Ed. 2023, 62, e202212979.
Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. A distannylated monomer of a strong electron-accepting organoboron building block: enabling acceptor-acceptor-type conjugated polymers for n-type thermoelectric applications. Angew. Chem. Int. Ed. 2021, 60, 16184–16190.
Wang, J.; Zhao, R.; Zhang, L.; Miao, J.; Liu, J.; Wang, L. A Direct surface modification strategy of ITO anodes enables high-performance organic photodetectors. J. Mater. Chem. C 2023, 11, 14421–14428.
Long, X.; Li, D.; Wang, B.; Jiang, Z.; Xu, W.; Wang, B.; Yang, D.; Xia, Y. Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 2019, 58, 11369–11373.
Hübner, A.; Diefenbach, M.; Bolte, M.; Lerner, H. W.; Holthausen, M. C.; Wagner, M. Confirmation of an early postulate: B-C-B two-electron-three-center bonding in organo(hydro)boranes. Angew. Chem. Int. Ed. 2012, 51, 12514–12518.
Müller, M.; Maichle-Mössmer, C.; Bettinger, H. F. BN-phenanthryne: cyclotetramerization of an 1,2-azaborine derivative. Angew. Chem. Int. Ed. 2014, 53, 9380–9383.
Liu, Q.; Yang, L.; Yao, C.; Geng, J.; Wu, Y.; Hu, X. Controlling the lewis acidity and polymerizing effectively prevent frustrated lewis pairs from deactivation in the hydrogenation of terminal alkynes. Org. Lett. 2021, 23, 3685–3690.
Müller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multicolour organic light-emitting displays by solution processing. Nature 2003, 421, 829–833.
Li, B.; Xu, X.; Sun, M.; Fu, Y.; Yu, G.; Liu, Y.; Bo, Z. Porphyrin-cored star polymers as efficient nondoped red light-emitting materials. Macromolecules 2006, 39, 456–461.
Qu, B.; Chen, Z.; Liu, Y.; Cao, H.; Xu, S.; Cao, S.; Lan, Z.; Wang, Z.; Gong, Q. Orange and red emitting OLEDs based on phenothiazine polymers. J. Phys. D: Appl. Phys. 2006, 39, 2680.
Gather, M. C.; Köhnen, A.; Falcou, A.; Becker, H.; Meerholz, K. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Adv. Funct. Mater. 2007, 17, 191–200.
Wang, T.; Li, K.; Yao, B.; Chen, Y.; Zhan, H.; Xie, Z.; Xie, G.; Yi, X.; Cheng, Y. Rigidity and polymerization amplified red thermally activated delayed fluorescence polymers for constructing red and single-emissive-layer white OLEDs. Adv. Funct. Mater. 2020, 30, 2002493.
Fan, Q.; Liu, Y.; Hao, Z.; Li, C.; Wang, Y.; Tan, H.; Zhu, W.; Cao, Y. Polymer light-emitting devices based on europium(III) complex with 11-bromo-dipyrido[3,2-a:2′,3′-c]phenazine. Sci. China Chem. 2015, 58, 1152–1158.
Chen, L. L.; Peng, L.; Wang, L. Y.; Zhu, X. H.; Zou, J. H.; Peng, J. Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability. Sci. China Chem. 2020, 63, 904–910.
Tao, Y.; Yang, C.; Qin, J. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943–2970.
Yook, K. S.; Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 2014, 26, 4218–4233.
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 22135007 and 52073281).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no interest conflict.
Electronic Supplementary Information
Rights and permissions
About this article
Cite this article
Gao, YY., Zhang, KY., Wang, SM. et al. Highly Red Emissive Conjugated Homopolymers Based on Double B←N Bridged Bipyridine Unit. Chin J Polym Sci 42, 1029–1037 (2024). https://doi.org/10.1007/s10118-024-3123-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-024-3123-7