Abstract
Grey wolf optimizer (GWO) is known as one of the recent popular metaheuristic algorithms inspired from the social collaboration and team hunting activities of grey wolves in nature. This algorithm benefits from stochastic operators, but it is still prone to stagnation in local optima and premature convergence when solving problems with a large number of variables (e.g., clustering problems). To alleviate this shortcoming, the GWO algorithm is hybridized with the well-known tabu search (TS). To investigate the performance of the proposed hybrid GWO and TS (GWOTS), it is compared with well-regarded metaheuristics on various clustering datasets. The comprehensive experiments and analysis verify that the proposed GWOTS shows an improved performance compared to GWO and can be utilized for clustering applications.
Similar content being viewed by others
References
Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manag 179:362–372
Agustı LE, Salcedo-Sanz S, Jiménez-Fernández S, Carro-Calvo L, Del Ser J, Portilla-Figueras JA et al (2012) A new grouping genetic algorithm for clustering problems. Expert Syst Appl 39(10):9695–9703
Ahmadyfard A, Modares H (2008) Combining pso and \(k\)-means to enhance data clustering. In: IEEE International Symposium on Telecommunications, 2008, pp 688–691
Al-Madi N, Aljarah I, Ludwig SA (2014) Parallel glow worm swarm optimization clustering algorithm based on mapreduce. In: IEEE Symposium on Swarm intelligence (SIS), 2014, pp 1–8
Aljarah I, Ludwig SA (2012) Parallel particle swarm optimization clustering algorithm based on mapreduce methodology. In: IEEE Fourth world congress on nature and biologically inspired computing (NaBIC), 2012, pp 104–111
Aljarah I, Ludwig SA (2013) Mapreduce intrusion detection system based on a particle swarm optimization clustering algorithm. In: IEEE congress on evolutionary computation (CEC), 2013, pp 955–962
Aljarah I, Ludwig SA (2013) A new clustering approach based on glowworm swarm optimization. In: IEEE congress on evolutionary computation (CEC), 2013, pp 2642–2649
Aljarah I, Ludwig SA (2013) Towards a scalable intrusion detection system based on parallel pso clustering using mapreduce. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, ACM, pp 169–170
Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili S (2020) Multi-verse optimizer: theory, literature review, and application in data clustering. Springer, Cham, pp 123–141
Ibrahim A, Majdi M, Asghar HA, Hossam F, Yong Z, Seyedali M (2018) Asynchronous accelerating multi-leader salp chains for feature selection. Appl Soft Comput 71:964–979
Apiletti D, Baralis E, Bruno G, Cerquitelli T (2009) Real-time analysis of physiological data to support medical applications. IEEE Trans Inf Technol Biomed 13(3):313–321
Das S, Abraham A, Konar A (2008) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern A Syst Hum 38(1):218–237
Ding Y, Xian F (2016) Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188:233–238
Doval D, Mancoridis S, Mitchell BS (1999) Automatic clustering of software systems using a genetic algorithm. In: STEP’99 proceedings software technology and engineering practice, IEEE, pp 73–81
Dua D, Graff C (2019) UCI machine learning repository. School of Information and Computer Science, University of California. Irvine, CA. http://archive.ics.uci.edu/ml
Muhammad F, Farhan A, Salabat K, Azmat SP, Khan M, Jaime L, Haoxiang W, Weon LJ, Irfan M et al (2018) Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Comput Electr Eng 70:853–870
Hossam F, Al-Zoubi AM, Asghar HA, Ibrahim A, Majdi M, Hassonah Mohammad A, Hamido F (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Inf Fusion 48:67–83
Faris H, Aljarah I, Mirjalili S, Castillo PA, Merelo JJ (2016) Evolopy: an open-source nature-inspired optimization framework in python. In: Proceedings of the 8th international joint conference on computational intelligence, IJCCI 2016, vol 1. ECTA, Porto, Portugal, 9–11 Nov 2016, pp 171–177
Hossam F, Mafarja Majdi M, Asghar HA, Ibrahim A, Al-Zoubi AM, Seyedali M, Hamido F (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67
Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA (2020) Salp Swarm algorithm: theory, literature review, and application in extreme learning machines. Springer, Cham, pp 185–199
Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549
Glover F (1989) Tabu search part i. ORSA J Comput 1(3):190–206
Glover F, Laguna M (2013) Tabu search. In: Pardalos PM, Du D-Z, Graham RL (eds) Handbook of combinatorial optimization. Springer, Boston, pp 3261–3362
Goldberg David E (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading
Gyamfi KS, Brusey J, Hunt A (2017) \(K\)-means clustering using Tabu search with quantized means. arXiv preprint arXiv:1703.08440
Hassanzadeh T, Meybodi MR (2012) A new hybrid approach for data clustering using firefly algorithm and k-means. In: IEEE 16th CSI international symposium on artificial intelligence and signal processing (AISP), pp 007–011
Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184
Asghar HA, Ali AR, Rezaee JA (2017) Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl Soft Comput 57:657–671
Heidari AA, Aljarah I, Faris H, Chen H, Luo J, Mirjalili S (2019) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04015-0
Heidari AA, Faris H, Aljarah I, Mirjalili S (2018) An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput. https://doi.org/10.1007/s00500-018-3424-2
Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant Lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. Springer, Cham, pp 23–46
Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872
Asghar HA, Parham P (2017) An efficient modified grey wolf optimizer with lévy flight for optimization tasks. Appl Soft Comput 60:115–134
Jain Anil K, Narasimha MM, Flynn Patrick J (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323
Jayabarathi T, Raghunathan T, Adarsh BR, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641
Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 7:881–892
Kapoor S, Zeya I, Singhal C, Nanda SJ (2017) A grey wolf optimizer based automatic clustering algorithm for satellite image segmentation. Proc Comput Sci 115:415–422
Katagiri H, Hayashida T, Nishizaki I, Guo Q (2012) A hybrid algorithm based on tabu search and ant colony optimization for \(k\)-minimum spanning tree problems. Expert Syst Appl 39(5):5681–5686
Katarya R, Verma OP (2018) Recommender system with grey wolf optimizer and fcm. Neural Comput Appl 30(5):1679–1687
Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE international conference on evolutionary computation, pp 303–308
Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, Berlin, pp 760–766
Khairuzzaman AKM, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl 86:64–76
Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by simulated annealing. Science 220(4598):671–680
Korayem L, Khorsid M, Kassem SS (2015) Using grey wolf algorithm to solve the capacitated vehicle routing problem. In: IOP conference series: materials science and engineering, IOP Publishing, vol 83, p 012014
Kumar V, Chhabra JK, Kumar D (2017) Grey wolf algorithm-based clustering technique. J Intell Syst 26(1):153–168
Kwedlo W (2011) A clustering method combining differential evolution with the \(k\)-means algorithm. Pattern Recognit Lett 32(12):1613–1621
Lee C-Y, Antonsson EK (2000) Dynamic partitional clustering using evolution strategies. In: 26th annual conference of the IEEE industrial electronics society, IECON, vol 4, pp 2716–2721
Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl Based Syst 161:185–204
Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, AlaM A-Z, Mirjalili S (2018) Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl Based Syst 145:25–45
Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. Springer, Cham, pp 47–67
Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit 33(9):1455–1465
Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161
Mirjalili S, Aljarah I, Mafarja M, Heidari AA, Faris H (2020) Grey Wolf optimizer: theory, literature review, and application in computational fluid dynamics problems. Springer, Cham, pp 87–105
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evolut Comput 16:1–18
Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(03):297–321
Osman IH, Christofides N (1994) Capacitated clustering problems by hybrid simulated annealing and tabu search. Int Trans Oper Res 1(3):317–336
Ozturk C, Hancer E, Karaboga D (2015) Dynamic clustering with improved binary artificial bee colony algorithm. Appl Soft Comput 28:69–80
Park H-S, Jun C-H (2009) A simple and fast algorithm for \(k\)-medoids clustering. Expert Syst Appl 36(2):3336–3341
Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35(3):211–222
Rao AS, Ramakrishna S, Chitti Babu P (2016) Modc. multi-objective distance based optimal document clustering by ga. Indian J Sci Technol 9:1–8
Rokach L, Maimon O (2005) Clustering methods. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, Boston, pp 321–352
Rosenberg A, Hirschberg J (2007) V-measure: a conditional entropy-based external cluster evaluation measure. EMNLP-CoNLL 7:410–420
Scheunders P (1997) A genetic \(c\)-means clustering algorithm applied to color image quantization. Pattern Recognit 30(6):859–866
Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evolut Comput 1(3):164–171
Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195
Shen Q, Shi W-M, Kong W (2008) Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Comput Biol Chem 32(1):53–60
Shukri S, Faris H, Aljarah I, Mirjalili S, Abraham A (2018) Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Eng Appl Artif Intell 72:54–66
Song HM, Sulaiman MH, Mohamed MR (2014) An application of grey wolf optimizer for solving combined economic emission dispatch problems. Int Rev Model Simul 7(5):838–844
Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global optim 11(4):341–359
Strehl A, Ghosh J, Mooney R (2000) Impact of similarity measures on web-page clustering. In: Workshop on artificial intelligence for web search (AAAI 2000), vol 58, p 64
Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York
Kumar TA, Kapil S, Manju B (2018) A novel clustering method using enhanced grey wolf optimizer and mapreduce. Big Data Res 14:93–100
Van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: IEEE congress on evolutionary computation, CEC’03, vol 1, pp 215–220
Wang J, Li M, Chen J, Pan Y (2011) A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Trans Comput Biol Bioinf 8(3):607–620
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82
Rui X, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678
Zhang S, Zhou Y (2015) Grey wolf optimizer based on powell local optimization method for clustering analysis. Discrete Dyn Nat Soc 2015:481360
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aljarah, I., Mafarja, M., Heidari, A.A. et al. Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach. Knowl Inf Syst 62, 507–539 (2020). https://doi.org/10.1007/s10115-019-01358-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-019-01358-x