Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Missing value imputation using a fuzzy clustering-based EM approach

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Data preprocessing and cleansing play a vital role in data mining by ensuring good quality of data. Data-cleansing tasks include imputation of missing values, identification of outliers, and identification and correction of noisy data. In this paper, we present a novel technique called A Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing Value Imputation Framework for Data Pre-processing (FEMI). It imputes numerical and categorical missing values by making an educated guess based on records that are similar to the record having a missing value. While identifying a group of similar records and making a guess based on the group, it applies a fuzzy clustering approach and our novel fuzzy expectation maximization algorithm. We evaluate FEMI on eight publicly available natural data sets by comparing its performance with the performance of five high-quality existing techniques, namely EMI, GkNN, FKMI, SVR and IBLLS. We use thirty-two types (patterns) of missing values for each data set. Two evaluation criteria namely root mean squared error and mean absolute error are used. Our experimental results indicate (according to a confidence interval and \(t\) test analysis) that FEMI performs significantly better than EMI, GkNN, FKMI, SVR, and IBLLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Distribution table: students t [online available: http://www.statsoft.com/textbook/distribution-tables/] (2012). Accessed 17 July 2012

  2. Tests for significance [online available: http://www.csulb.edu/msaintg/ppa696/696stsig.htm] (2014). Accessed 12 May 2014

  3. Banerjee A, Merugu S, Dhillon IS, Ghosh J (2005) Clustering with bregman divergences. J Mach Learn Res 6:1705–1749

    MathSciNet  MATH  Google Scholar 

  4. Batista G, Monard M (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5–6):519–533

    Article  Google Scholar 

  5. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203

    Article  Google Scholar 

  6. Bilmes JA et al (1998) A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Int Comput Sci Inst 4(510):126

    Google Scholar 

  7. Bø TH, Dysvik B, Jonassen I (2004) Lsimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res 32(3):e34–e34

    Article  Google Scholar 

  8. Branch JW, Giannella C, Szymanski B, Wolff R, Kargupta H (2013) In-network outlier detection in wireless sensor networks. Knowl Inf Syst 34(1):23–54

    Article  Google Scholar 

  9. Cai Z, Heydari M, Lin G (2006) Iterated local least squares microarray missing value imputation. J Bioinform Comput Biol 4(5):935–958

    Article  Google Scholar 

  10. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2: 27:1–27:27. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  11. Chatzis SP (2011) The fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Syst Appl 38:8684–8689

    Article  Google Scholar 

  12. Cheng K, Law N, Siu W (2012) Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data. Pattern Recognit 45(4):1281–1289. doi:10.1016/j.patcog.2011.10.012

    Article  Google Scholar 

  13. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  14. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B (Methodological) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  15. Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 7 June 2012

  16. Han J, Kamber M (2000) Data: mining Concepts and techniques. The Morgan Kaufmann Series in data management systems 2

  17. Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2011) Statistical outlier detection using direct density ratio estimation. Knowl Inf Syst 26(2):309–336

    Article  Google Scholar 

  18. Honaker J, King G (2010) What to do about missing values in time-series cross-section data. Am J Polit Sci 54(2):561–581

    Article  Google Scholar 

  19. Hourani M, El Emary IM (2009) Microarray missing values imputation methods: critical analysis review. Comput Sci Inf Syst ComSIS 6(2):165–190

    Article  Google Scholar 

  20. Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Discov 2(3):283–304

    Article  Google Scholar 

  21. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Inc, Englewood Cliffs NJ

    MATH  Google Scholar 

  22. Junninen H, Niska H, Tuppurainen K, Ruuskanen J, Kolehmainen M (2004) Methods for imputation of missing values in air quality data sets. Atmos Environ 38(18):2895–2907

    Article  Google Scholar 

  23. Khoshgoftaar T, Van Hulse J (2005) Empirical case studies in attribute noise detection. In: IRI-2005 IEEE international conference on information reuse and integration, conf, 2005. IEEE, pp 211–216

  24. Kim DW, Lee KH, Lee D (2004) Fuzzy clustering of categorical data using fuzzy centroids. Pattern Recognit Lett 25(11):1263–1271

    Article  Google Scholar 

  25. Kim H, Golub G, Park H (2005) Missing value estimation for dna microarray gene expression data: local least squares imputation. Bioinformatics 21(2):187–198

    Article  Google Scholar 

  26. Lee M, Pedrycz W (2009) The fuzzy c-means algorithm with fuzzy p-mode prototypes for clustering objects having mixed features. Fuzzy Sets Syst 160(24):3590–3600

    Article  MathSciNet  MATH  Google Scholar 

  27. Li D, Deogun J, Spaulding W, Shuart B (2004) Towards missing data imputation: a study of fuzzy k-means clustering method. Tsumoto S, Słowiński R, Komorowski J, Grzymała-Busse JW (eds) RSCTC 2004, LNAI, vol 3066. Springer, Berlin, Heidelberg, pp 573–579

  28. Li L, Huang L, Yang W, Yao X, Liu A (2013) Privacy-preserving lof outlier detection. Knowl Inf Syst 42(3):579–597

    Article  Google Scholar 

  29. Liu B, Xiao Y, Cao L, Hao Z, Deng F (2013) SVDD-based outlier detection on uncertain data. Knowl Inf Syst 34(3):597–618

    Article  Google Scholar 

  30. Lu Y, Roychowdhury V (2008) Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR). Knowl Inf Syst 14(2):233–247

    Article  Google Scholar 

  31. Luengo J, García S, Herrera F (2011) On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl Inf Syst 32:77–108

    Article  Google Scholar 

  32. Maletic J, Marcus A (2000) Data cleansing: beyond integrity analysis. In: Proceedings of the conference on information quality. Citeseer, pp 200–209

  33. Oba S, Sato M, Takemasa I, Monden M, Matsubara K, Ishii S (2003) A bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16):2088–2096

    Article  Google Scholar 

  34. Pham DT, Dimov SS, Nguyen C (2005) Selection of k in k-means clustering. Proc Inst Mech Eng Part C J Mech Eng Sci 219(1):103–119

    Article  Google Scholar 

  35. Rahman MG, Islam MZ (2011) A decision tree-based missing value imputation technique for data pre-processing. In: Australasian data mining conference (AusDM 11), CRPIT, vol 121, pp 41–50. ACS, Ballarat, Australia. http://crpit.com/confpapers/CRPITV121Rahman.pdf

  36. Rahman MG, Islam MZ (2013) Data quality improvement by imputation of missing values. In: International conference on computer science and information technology (CSIT-2013). Yogyakarta, Indonesia, pp 82–88

  37. Rahman MG, Islam MZ (2013) KDMI: a novel method for missing values imputation using two levels of horizontal partitioning in a data set. In: The 9th international conference on advanced data mining and applications (ADMA 2013) Hangzhou, China

  38. Rahman MG, Islam MZ (2013) Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques. Knowl Based Syst. doi:10.1016/j.knosys.2013.08.023

    Google Scholar 

  39. Rahman MG, Islam MZ (2013) A novel framework using two layers of missing value imputation. In: Australasian data mining conference (AusDM 13), CRPIT, vol 146. ACS, Canberra, Australia

  40. Rahman MG, Islam MZ, Bossomaier T, Gao J (2012) Cairad: a co-appearance based analysis for incorrect records and attribute-values detection. In: The 2012 international joint conference on neural networks (IJCNN). IEEE, Brisbane, Australia, pp 1–10. doi:10.1109/IJCNN.2012.6252669

  41. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  MATH  Google Scholar 

  42. Rubin D (1976) Inference and missing data. Biometrika 63(3):581–592

    Article  MathSciNet  MATH  Google Scholar 

  43. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14(5):853–871

    Article  Google Scholar 

  44. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  45. Sun H, Wang S, Jiang Q (2004) Fcm-based model selection algorithms for determining the number of clusters. Pattern Recognit 37(10):2027–2037

    Article  MATH  Google Scholar 

  46. Triola MF, Goodman WM, LaBute G, Law R, MacKay L (2006) Elementary statistics. Pearson/Addison-Wesley, Reading, MA

    Google Scholar 

  47. Tseng S, Wang K, Lee CI (2003) A pre-processing method to deal with missing values by integrating clustering and regression techniques. Appl Artif Intell 17(5–6):535–544

    Article  Google Scholar 

  48. Wang H, Wang S (2010) Mining incomplete survey data through classification. Knowl Inf Syst 24(2):221–233

  49. Wang X, Li A, Jiang Z, Feng H (2006) Missing value estimation for dna microarray gene expression data by support vector regression imputation and orthogonal coding scheme. BMC Bioinform 7(1):32

    Article  Google Scholar 

  50. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37

    Article  Google Scholar 

  51. Zhang, C., Qin, Y., Zhu, X., Zhang, J., Zhang, S.: Clustering-based missing value imputation for data preprocessing. In: 2006 IEEE international conference on industrial informatics. IEEE, pp 1081–1086 (2006)

  52. Zhang S (2011) Shell-neighbor method and its application in missing data imputation. Appl Intell 35(1):123–133

    Article  MATH  Google Scholar 

  53. Zhang S (2012) Nearest neighbor selection for iteratively k-nn imputation. J Syst Softw 85(11):2541–2552

    Article  Google Scholar 

  54. Zhang S, Jin Z, Zhu X (2011) Missing data imputation by utilizing information within incomplete instances. J Syst Softw 84(3):452–459

    Article  Google Scholar 

  55. Zhu X, Zhang S, Jin Z, Zhang Z, Xu Z (2011) Missing value estimation for mixed-attribute data sets. IEEE Trans Knowl Data Eng 23(1):110–121

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Zahidul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.G., Islam, M.Z. Missing value imputation using a fuzzy clustering-based EM approach. Knowl Inf Syst 46, 389–422 (2016). https://doi.org/10.1007/s10115-015-0822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-015-0822-y

Keywords

Navigation