Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The impact of asynchronous trading on Epps effect on Warsaw Stock Exchange

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

The main goal of the analysis is the verification of whether asynchrony in transaction times is a considerable cause of the Epps effect on the Warsaw Stock Exchange among the most liquid assets. A method for compensating for the impact of asynchrony in trading on the Epps effect is presented. The method is easily applicable. Calculations are made using the exact time of transactions and prices of the assets. The estimation is not biased by intervals during which no transactions have taken place. Among all the analyzed stock pairs, asynchrony turns out to be the main cause of the Epps effect. However, the corrected correlation estimator seems to be more volatile than the regular estimator of the correlation. The presented analysis can be reproduced for the same data or replicated for another dataset; all R codes used in the process of writing this article are available upon request. The main novelty/value added of this paper is the application to an emerging market of a new method for compensating for asynchrony in trading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen T, Bollerslev T, Diebold F, Labys P (2001a) The distribution of realized exchange rate volatility. J Am Stat Assoc 96:42–55

  • Andersen T, Bollerslev T, Diebold F, Ebens H (2001b) The distribution of realized stock volatility. J Financ Econ 61:43–76

  • Bonanno G, Lillo F, Mantegna RN (2001) High-frequency cross-correlation in a set of stocks. Quant Finance 1:96–104

    Article  Google Scholar 

  • Burns P, Engle R, Mezrich J (1998) Correlations and volatilities of asynchronous data. J Deriv 5:7–18

    Article  Google Scholar 

  • Conlon T, Ruskin HJ, Crane M (2009) Multiscaled cross-correlation dynamics in financial time-series. Phys A 388(5):705–714

    Article  Google Scholar 

  • Epps TW (1979) Comovements in stock prices in the very short run. J Am Stat Assoc 74:291–298

    Google Scholar 

  • Lundin MC, Dacorogna MM, Müller UA (1998) Correlation of high frequency financial time series. In: Tick PL (ed) The financialmarkets tick. http://ssrn.com/abstract=79848

  • Martens M, Poon SH (2001) Returns synchronization and daily correlation dynamics between international stock markets. J Bank Finance 25:1805–1827

    Article  Google Scholar 

  • Mastromatteo I, Marsili M, Zoi P (2011) Financial correlations at ultra-high frequency: theoretical models and empirical estimation. Eur Phys J B 80:243–253

    Article  Google Scholar 

  • Munnix MC, Schafer R, Guhr T (2010) Compensating asynchrony effects in the calculation of financial correlations. Phys A 389:767–779

    Article  Google Scholar 

  • Muthuswamy J, Sarkar S, Low A, Terry E (2001) Time variation in the correlation structure of exchange rates: high-frequency analyses. J Futur Mark 21:127–144

    Article  Google Scholar 

  • Reno R (2003) A closer look at the Epps-effect. Int J Theor Appl Finance 6:87–102

    Article  Google Scholar 

  • Toth B, Kertesz J (2009) The epps effect revisited. Quant Finance 9:793–802

    Article  Google Scholar 

  • Zebedee AA, Kasch-Haroutounian M (2009) A closer look at co-movements among stock returns. J Econ Bus 61:279–294

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this paper from the National Science Centre of Poland (Research Grant DEC-2012/05/B/HS4/00810) is gratefully by Henryk Gurgul acknowledged. Financial support for this paper from the Dean of Faculty of Management, AGH University (Statutory Activity No. 15/11.200.296) is gratefully acknowledged by Artur Machno. We would like to thank the two anonymous referees for their valuable comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Gurgul.

Appendix

Appendix

Proof of Theorem 4.1

Let us first calculate the observed normalized process \(g_{\Delta t}^i (t)\) in terms of the underlying process \(\tilde{g} ^{i}(t)\), where \(i=1,2\). The operator \(\langle \cdots \rangle \) means the average over the analyzed period \(\left[ {0,\hbox {T}}\right] \).

$$\begin{aligned} g_{\Delta t}^i (t)= & {} \frac{{r}_{\Delta t}^i (t)-\langle {r}_{\Delta t}^i\rangle }{\sigma _{\Delta t}^i }=\frac{\mathop \sum \nolimits _{j=1}^{N_{\Delta t}^i (t)}\tilde{r} ^{i}\left( {\gamma ^{i}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) -\langle {r}_{\Delta t}^i \rangle }{\sigma _{\Delta t}^i }\\= & {} \frac{\mathop \sum \nolimits _{j=1}^{N_{\Delta t}^i (t)} \left( {\tilde{\sigma }^{i}\tilde{g} ^{i}\left( {\gamma ^{i}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) +\langle \tilde{r}^{i}\rangle } \right) -\langle {r}_{\Delta t}^i\rangle }{\sigma _{\Delta t}^i}\\= & {} \frac{\tilde{\sigma }^{i}\mathop \sum \nolimits _{j=1}^{N_{\Delta t}^i (t)} \tilde{g}^{i}\left( {\gamma ^{i}\left( \hbox {t} \right) +j\Delta \tilde{t}}\right) +N_{\Delta t}^i (t)\langle \tilde{r}^{i}\rangle -\langle {r}_{\Delta t}^i \rangle }{\sigma _{\Delta t}^i} \end{aligned}$$

Under Assumption A1:

$$\begin{aligned} \langle {r}_{\Delta t}^i (t)\rangle =\langle {N}_{\Delta t}^i\rangle \langle \tilde{r}^{i}\rangle ;\left( {\sigma _{\Delta t}^i } \right) ^{2}=\langle {N}_{\Delta t}^i \rangle \left( {\tilde{\sigma }^{i}} \right) ^{2} \end{aligned}$$

Thus,

$$\begin{aligned} g_{\Delta t}^i (t)=\frac{1}{\sqrt{\langle {N}_{\Delta t}^i \rangle }}\mathop \sum \limits _{j=1}^{N_{\Delta t}^i (t)} \tilde{g}^{i}\left( {\gamma ^{i}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) +\frac{\langle \tilde{r}^{i}\rangle \left( {N_{\Delta t}^i (t)-\langle {N}_{\Delta t}^i \rangle } \right) }{\sigma _{\Delta t}^i } \end{aligned}$$

Let us now calculate the observed correlation \(\hbox {corr}\left( {r_{\Delta t}^1 ,r_{\Delta t}^2 } \right) \) in terms of the correlation of underlying processes \(\hbox {corr}_{t_j } \left( {\tilde{g}^{1},\tilde{g}^{2}} \right) \).

$$\begin{aligned}&\hbox {corr}\left( {r_{\Delta t}^1 ,r_{\Delta t}^2 } \right) =\frac{1}{T}\mathop \sum \limits _{j=1}^T g_{\Delta t}^1 (t)g_{\Delta t}^2 (t)\\&\quad =\frac{1}{T}\mathop \sum \limits _{j=1}^T \left( \left( {\frac{1}{\sqrt{\langle {N}_{\Delta t}^1\rangle }}\mathop \sum \limits _{j=1}^{N_{\Delta t}^1 (t)} \tilde{g}^{1}\left( {\gamma ^{1}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) +\frac{\langle \tilde{r}^{1}\rangle \left( {N_{\Delta t}^1 (t)-\langle {N}_{\Delta t}^1 \rangle } \right) }{\sigma _{\Delta t}^1}} \right) \right. \\&\qquad \left. \times \left( {\frac{1}{\sqrt{\langle {N}_{\Delta t}^2\rangle }}\mathop \sum \limits _{j=1}^{N_{\Delta t}^2 (t)} \tilde{g}^{2}\left( {\gamma ^{2}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) +\frac{\langle \tilde{r}^{2}\rangle \left( {N_{\Delta t}^2 (t)-\langle {N}_{\Delta t}^2\rangle } \right) }{\sigma _{\Delta t}^2 }} \right) \right) \end{aligned}$$

The average of the second component in each factor equals zero, thus under Assumption A1 we have.

$$\begin{aligned} \hbox {corr}\left( {r_{\Delta t}^1 ,r_{\Delta t}^2 } \right)= & {} \frac{1}{T}\mathop \sum \limits _{j=1}^T \left( \frac{1}{\sqrt{\langle {N}_{\Delta t}^1 \rangle }}\mathop \sum \limits _{j=1}^{N_{\Delta t}^1 (t)} \tilde{g} ^{1}\left( {\gamma ^{1}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) \right. \\&\left. \times \frac{1}{\sqrt{\langle {N}_{\Delta t}^2 \rangle }}\mathop \sum \limits _{j=1}^{N_{\Delta t}^2 (t)} \tilde{g} ^{2}\left( {\gamma ^{2}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) \right) \end{aligned}$$

The means of the process \(\tilde{g}^{1}\) and \(\tilde{g}^{2}\) equal zero, thus under Assumption A2 we have.

$$\begin{aligned}&\hbox {corr}\left( {r_{\Delta t}^1 ,r_{\Delta t}^2 } \right) \\&\quad =\frac{1}{T}\mathop \sum \limits _{j=1}^T \left( {\frac{1}{\sqrt{\langle N_{\Delta t}^1\rangle \langle N_{\Delta t}^2\rangle }}\mathop \sum \limits _{j=1}^{\overline{N}\left( {t_j } \right) } \tilde{g}^{1}\left( {\gamma ^{1}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) \tilde{g}^{2}\left( {\gamma ^{2}\left( \hbox {t} \right) +j\Delta \tilde{t}} \right) } \right) \\&\quad =\frac{1}{T}\mathop \sum \limits _{j=1}^T \left( \frac{ \overline{N} \left( {t_j } \right) }{\sqrt{\langle N_{\Delta t}^1\rangle \langle N_{\Delta t}^2 \rangle }}\hbox {corr}_{t_j } \left( {\tilde{g}^{1},\tilde{g}^{2}} \right) \right) \end{aligned}$$

Thus,

$$\begin{aligned} \hbox {corr}_c \left( {r_{\Delta t}^1 ,r_{\Delta t}^2 } \right) =\frac{1}{T}\mathop \sum \limits _{j=1}^T g_{\Delta t}^1 (t)g_{\Delta t}^2 (t)\frac{\sqrt{\langle N_{\Delta t}^1\rangle \langle N_{\Delta t}^2\rangle }}{\overline{N}\left( {t_j } \right) }; \end{aligned}$$

which had to be proven. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurgul, H., Machno, A. The impact of asynchronous trading on Epps effect on Warsaw Stock Exchange. Cent Eur J Oper Res 25, 287–301 (2017). https://doi.org/10.1007/s10100-016-0442-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-016-0442-y

Keywords

JEL Classification

Navigation