Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Combining sources of evidence with reliability and importance for decision making

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

The combination of sources of evidence with reliability has been widely studied within the framework of Dempster-Shafer theory (DST), which has been employed as a major method for integrating multiple sources of evidence with uncertainty. By the fact that sources of evidence may also be different in importance, for example in multi-attribute decision making (MADM), we propose the importance discounting and combination method within the framework of DST to combine sources of evidence with importance, which is composed of an importance discounting operation and an extended Dempster’s rule of combination. Three evidence combination axioms are proposed and explored to uncover the differences between reliability and importance in evidence reasoning. Furthermore, a general scheme is proposed for combination of sources of evidence with both reliability and importance. An example of car performance evaluation is studied to show the efficiency of the new general scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anand SS, Bell DA et al (1996) EDM: a general framework for data mining based on evidence theory. Data Knowl Eng 18(3):189–223

    Article  Google Scholar 

  • Barron FH, Barrett BE (1996) Decision quality using ranked attribute weights. Manag Sci 42(11): 1515–1523

    Article  Google Scholar 

  • Beynon M (2002) DS/AHP method: a mathematical analysis, including an understanding of uncertainty. Eur J Operat Res 140(1):148–164

    Article  Google Scholar 

  • Beynon M (2005a) A method of aggregation in DS/AHP for group decision-making with the non-equivalent importance of individuals in the group. Comput Oper Res 32(7):1881–1896

    Article  Google Scholar 

  • Beynon M (2005b) Understanding local ignorance and non-specificity within the DS/AHP method of multi-criteria decision making. Eur J Oper Res 163(2):403–417

    Article  Google Scholar 

  • Beynon M, Curry B et al (2000) The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. OMEGA Int J Manag Sci 28(1):37–50

    Article  Google Scholar 

  • Beynon M, Cosker D et al (2001) An expert system for multi-criteria decision making using Dempster–Shafer theory. Expert Syst Appl 20(4):357–367

    Article  Google Scholar 

  • Davis JP, Hall JW (2003) A software-supported process for assembling evidence and handling uncertainty in decision making. Decis Support Syst 35(3):415–433

    Article  Google Scholar 

  • Dempster A (1967) Upper and lower probabilities induced by multivalued mapping. Ann Math Stat 38(2):325–339

    Article  Google Scholar 

  • Deng Y, Shi WK et al (2004) Combining belief functions based on distance of evidence. Decis Support Syst 38(3):489–493

    Article  Google Scholar 

  • Denœux T (1995) A k-nearest neighbor classification rule based on Dempster–Shafer theory. IEEE Trans Syst Man Cybern 25(5):804–813

    Article  Google Scholar 

  • Denœux T, Masson MH (2012) Evidential reasoning in large partially ordered sets. Ann Oper Res 195: 135–161

    Article  Google Scholar 

  • Dijkstra TK (2013) On the extraction of weights from pairwise comparison matrices. Central Eur J Oper Res 21(1):103–123

    Article  Google Scholar 

  • Ghasemi J, Ghaderi R et al (2013) A novel fuzzy Dempster-Shafer inference system for brain MRI segmentation. Inf Sci 223(5):205–220

    Article  Google Scholar 

  • Haenni R, Hartmann S (2006) Modeling partially reliable information sources: a general approach based on Dempster-Shafer theory. Inf Fusion 7(4):361–379

    Article  Google Scholar 

  • Hégarat-Mascle SL, Bloch I et al (1998) Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover. Pattern Recogn 31(11):1811–1823

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision-making: methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Ishizaka A, Lusti M (2006) How to derive priorities in AHP: a comparative study. Central Eur J Oper Res 14:387–400

    Article  Google Scholar 

  • Liu ZG, Dezert J et al (2011) Combination of sources of evidence with different discounting factors based on a new dissimilarity measure. Decis Support Syst 52(1):133–141

    Article  Google Scholar 

  • Mercier D, Quost B et al (2008) Refined modeling of sensor reliability in the belief function framework using contextual discounting. Inf Fusion 9(2):246–258

    Article  Google Scholar 

  • Milisavljević N, Bloch I (2003) Sensor fusion in anti-personnel mine detection using a two-level belief function model. IEEE Trans Syst Man Cybern Part C 33(2):269–283

    Article  Google Scholar 

  • Roberts R, Goodwin P (2002) Weight approximations in multi-attribute decision models. J Multi-Criteria Decis Anal 11(6):291–303

    Article  Google Scholar 

  • Scotney B, McClean S (2003) Database aggregation of imprecise and uncertain evidence. Inf Sci 155(3):245–263

    Article  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    Google Scholar 

  • Shafer G (1987) Probability judgment in artificial intelligence and expert systems. Stat Sci 2(1):3–16

    Article  Google Scholar 

  • Smarandache F, Dezert J (2006) Proportional conflict redistribution rules for information fusion. In: Smarandache F, Dezert J (eds) Advances and applications of DSmT for information fusion (collected works), Rehoboth: American Research Press, vol 2, pp 3–68

  • Smarandache F, Dezert J, et al (2010) Fusion of sources of evidence with different importances and reliabilities. In: Proceedings of 13th international conference on informance fusion, Edinburgh, UK

  • Smets P (1990) The combination of evidence in the transferable belief model. IEEE Trans Pattern Anal 12(2):447–458

    Article  Google Scholar 

  • Smets P (2005) Decision making in the TBM: the necessity of the pignistic transformation. Int J Approx Reason 38(2):133–147

    Article  Google Scholar 

  • Srinivasan T, Chandrasekhar A et al (2005) Knowledge discovery in clinical databases with neural network evidence combination. In: Proceedings of ICISIP, pp 512–517

  • Tabassian M, Ghaderi R et al (2012) Combining complementary information sources in the DempstercShafer framework for solving classification problems with imperfect labels. Knowl-Based Syst 27(1):92–102

    Article  Google Scholar 

  • Tacnet JM, Batton-Hubert M, et al. (2009) Information fusion for natural hazards in mountains. In: Smarandache F, Dezert J (eds) Advances and applications of DSmT for information fusion (collected works), American Research Press, Rehoboth, vol 3, pp 365–660

  • Xu DL (2012) An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis. Ann Oper Res 195:163–187

    Article  Google Scholar 

  • Xu DL, Yang JB, Wang YM (2006) The ER approach for multi-attribute decision analysis under interval uncertainties. Eur J Oper Res 174(3):1914–1943

    Article  Google Scholar 

  • Xu X (2004) A note on the subjective and objective integrated approach to determine attribute weights. Eur J Oper Res 156(2):530–532

    Article  Google Scholar 

  • Yang JB, Sen P (1994) A general multi-level evaluation process for hybrid multiple attribute decision making with uncertainty. IEEE Tranns Syst Man Cybern 24(10):1458–1473

    Article  Google Scholar 

  • Yang JB, Xu DL (2002) On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans Syst Man Cybern A 32(3):289–304

    Article  Google Scholar 

  • Yang JB, Xu DL (2011) Introduction to the ER rule for evidence combination. In: Tang Y, Huynh VN, Lawry J (eds) International conference on integrated uncertainty in knowledge modeling and decision making. Springer, Berlin, pp 7–15

    Chapter  Google Scholar 

  • Yang JB, Liu J et al (2006) Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Trans Syst Man Cybern A 36(2):266–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianmeng Jiao.

Additional information

This work is partially supported by China Natural Science Foundation (No. 61135001, 61075029) and the Doctorate Foundation of Northwestern Polytechnical University (No. CX201319).

Appendices

Appendix A: Proof of Lemma 1

According to Definition 5, \(\hbox {m}_{12}^{\hbox {ED}}(\emptyset ) = 0\) is satisfied directly. Besides,

$$\begin{aligned} \sum \limits _{A \in {2^{{\varTheta ^ + }}}} {\hbox {m}_{12}^{\hbox {ED}}(A)}&= \sum \limits _{A \in {2^{{\varTheta ^ + }}},A \ne \emptyset } {\hbox {m}_{12}^{\hbox {ED}}(A)} + \hbox {m}_{12}^{\hbox {ED}}(\emptyset ) = \sum \limits _{A \in {2^{{\varTheta ^ + }}},A \ne \emptyset } {\hbox {m}_{12}^{\hbox {ED}}(A)}\nonumber \\&= \frac{{\sum \nolimits _{A \in {2^{{\varTheta ^ + }}},A \ne \emptyset } {\left( {\sum \nolimits _{B,C \in {2^{{\varTheta ^ + }}};B \cap C = A} {\hbox {m}_1^{{\beta _1}}(B)\hbox {m}_2^{{\beta _2}}(C)} } \right) } }}{{1 - \sum \nolimits _{B,C \in {2^{{\varTheta ^ + }}};B \cap C = \emptyset } {\hbox {m}_1^{{\beta _1}}(B) \hbox {m}_2^{{\beta _2}}(C)} }}. \end{aligned}$$
(10)

Because,

$$\begin{aligned}&\sum \limits _{A \in {2^{{\varTheta ^ + }}},A \ne \emptyset } {\left( {\sum \limits _{B,C \in {2^{{\varTheta ^ + }}};B \cap C = A} {\hbox {m}_1^{{\beta _1}}(B)\hbox {m}_2^{{\beta _2}}(C)} } \right) + } \sum \limits _{B,C \in {2^{{\varTheta ^ + }}};B \cap C = \emptyset } {\hbox {m}_1^{{\beta _1}}(B) \hbox {m}_2^{{\beta _2}}(C)}\\&\quad \quad = \sum \limits _{A \in {2^{{\varTheta ^ + }}}} {\left( {\sum \limits _{B,C \in {2^{{\varTheta ^ + }}};B \cap C = A} {\hbox {m}_1^{{\beta _1}}(B)\hbox {m}_2^{{\beta _2}}(C)} } \right) }\\&\quad \quad =\sum \limits _{B \in {2^{{\varTheta ^ + }}}} {\left( {\hbox {m}_1^{{\beta _1}}(B)\sum \limits _{C \in {2^{{\varTheta ^ + }}}} {\hbox {m}_2^{{\beta _2}}(C)} } \right) }= \sum \limits _{B \in {2^{{\varTheta ^ + }}}} {\hbox {m}_1^{{\beta _1}}(B)} = 1, \end{aligned}$$

so, Eq. (10) equals 1. Therefore, the combination result \(\hbox {m}_{12}^{\hbox {ED}}( \cdot )\) with the extended Dempster’s rule of combination is an IBBA.

Appendix B: Proof of Theorem 1

Suppose \({\hbox {m}_i}( \cdot )\) (\(i = 1, \ldots ,L\)) are \(L\) basic sources of evidence’s BBAs on the same frame of discernment \(\varTheta \) with reliability factors \({\alpha _i} \in [0,1]\) (\(i = 1, \ldots ,L\)). Denote \({\hbox {m}} ( \cdot )\) the integrated BBA with the reliability discounting and combination method.

As for the independence axiom, \(\forall S \in {2^\varTheta }{\setminus }\varTheta \), suppose \(\forall {S^ + } \supseteq S,\,{\hbox {m}_i}({S^ + }) = 0\) for all \(i = 1, \ldots ,L\). Discount all the \(L\) BBAs with their corresponding reliability factors \({\alpha _i}\) using Shafer’s discounting operation displayed as Eq. (3), we can get the reliability discounted BBAs assigned to \({S^ + }\)

$$\begin{aligned} {\hbox {m}_i}^{{\alpha _i}}(A) = \left\{ {\begin{array}{ll} 0, &{}\quad {\hbox {for }}A \in {2^\varTheta },A \supseteq S,A \ne \varTheta \\ 1 - {\alpha _i},&{}\quad {\hbox {for }}A = \varTheta \\ \end{array}} \right. \quad {\hbox {for }}i = 1, \ldots ,L. \end{aligned}$$
(11)

Then, the Dempster’s rule of combination displayed as Eq. (4) will be used to get the integrated BBAs assigned to \(S\)

$$\begin{aligned} \hbox {m}(S) = {{\sum \limits _{{X_i} \in {2^\varTheta };\bigcap \limits _{i = 1}^L {{X_i}} = S} {\prod \limits _{i = 1}^L {\hbox {m}_i^{{\alpha _i}}({X_i})} } } \mathord {\Bigg / {} } {\left( {1 - \sum \limits _{{X_i} \in {2^\varTheta };\bigcap \limits _{i = 1}^L {{X_i}} = \emptyset } {\prod \limits _{i = 1}^L {\hbox {m}_i^{{\alpha _i}}({X_i})} } } \right) }}. \end{aligned}$$
(12)

Since \(\bigcap _{i = 1}^L {{X_i}} = S\), so \({X_i} \supseteq S\). According to Eq. (11), if \({X_i} \ne \varTheta ,\,\hbox {m}_i^{{\alpha _i}}({X_i}) = 0\) for all \(i = 1, \ldots ,L\). Because it’s impossible for all \({X_i}\) to take \(\varTheta \) satisfying \(\bigcap _{i = 1}^L {{X_i}} = S\), so, \(\prod _{i = 1}^L {\hbox {m}_i^{{\alpha _i}}({X_i})}\) will equal 0 in any cases. Hence, \({\hbox {m}} (S)\) in Eq. (12) equals 0. That is, the reliability discounting and combination method satisfies the independence axiom.

As for the consensus axiom, \(\forall S \in {2^\varTheta }{\setminus }\varTheta \), suppose \({\hbox {m}_i}(S) = 1\) for all \(i = 1, \ldots ,L\). Discount all the \(L\) BBAs with their corresponding reliability factors \({\alpha _i}\) using Shafer’s discounting operation displayed as Eq. (3), we can get the reliability discounted BBAs

$$\begin{aligned} {\hbox {m}_i}^{{\alpha _i}}(A) = \left\{ {\begin{array}{l@{\quad }l} {\alpha _i}, &{}{\hbox {for }}A = S\\ 0, &{}{\hbox {for }}A \in {2^\varTheta },A \ne S,A \ne \varTheta {\hbox { for }}i = 1, \cdots ,L.\\ 1 - {\alpha _i}, &{}{\hbox {for }}A = \varTheta \end{array}} \right. \end{aligned}$$

Then, the Dempster’s rule of combination displayed as Eq. (4) will be used to integrate the reliability discounted BBAs

$$\begin{aligned} \hbox {m}(A) = \left\{ {\begin{array}{l@{\quad }l} 0, &{}{\hbox {for }}A \in {2^\varTheta },A \ne S,A \ne \varTheta \\ \prod \nolimits _{i = 1}^L {(1 - {\alpha _i})}, &{}{\hbox {for }}A = \varTheta . \end{array}} \right. \end{aligned}$$

So,

$$\begin{aligned} \hbox {m}(S) = 1 - \sum \limits _{A \in {2^\varTheta },A \ne S,A \ne \varTheta } {\hbox {m}(A)} - \hbox {m}(\varTheta ) = 1 - \prod \limits _{i = 1}^L {(1 - {\alpha _i})}. \end{aligned}$$

Thus, the reliability discounting and combination method only satisfies the consensus axiom when at least one source of evidence takes full reliability (\(\exists k \in \{ 1, \ldots ,L\} , {\alpha _k} = 1\)).

As for the completeness axiom, \(\forall S \in {2^\varTheta }{\setminus }\varTheta \), suppose \(\sum \nolimits _{{S^ - } \subseteq S} {{\hbox {m}_i}({S^ - })} = 1\) for all \(i = 1, \ldots ,L\). We can know that \(\forall {S^{ + + }} \supset S,\,{\hbox {m}_i}({S^{ + + }}) = 0\). Discount all the \(L\) BBAs with their corresponding reliability factors \({\alpha _i}\) using Shafer’s discounting operation displayed as Eq. (3), we can get the reliability discounted BBAs assigned to \({S^{ + + }}\)

$$\begin{aligned} {\hbox {m}_i}^{{\alpha _i}}(A) = \left\{ {\begin{array}{l@{\quad }l} 0, &{}{\hbox {for }}A \in {2^\varTheta },A \supset S,A \ne \varTheta \\ 1 - {\alpha _i}, &{}{\hbox {for }}A = \varTheta \end{array}} \right. {\hbox { for }}i = 1, \ldots ,L. \end{aligned}$$
(13)

Then, the Dempster’s rule of combination displayed as Eq. (4) will be used to get the integrated BBAs assigned to \({S^{ + + }}\)

$$\begin{aligned} \hbox {m}({S^{ + + }}) = {{\sum \limits _{{X_i} \in {2^\varTheta };\bigcap \limits _{i = 1}^L {{X_i}} = {S^{ + + }}} {\prod \limits _{i = 1}^L {\hbox {m}_i^{{\alpha _i}}({X_i})} } } \mathord {\Bigg / {} } {\left( {1 - \sum \limits _{{X_i} \in {2^\varTheta };\bigcap \limits _{i = 1}^L {{X_i}} = \emptyset } {\prod \limits _{i = 1}^L {\hbox {m}_i^{{\alpha _i}}({X_i})} } } \right) }}. \end{aligned}$$
(14)

Since \(\bigcap _{i = 1}^L {{X_i}}= {S^{ + + }}\), so \({X_i} \supseteq {S^{ + + }} \supset S\). Now, we consider it for two cases. If \({S^{ + + }} \ne \varTheta \), according to Eq. (13), \(\hbox {m}_i^{{\alpha _i}}({X_i}) = 0\) for all \(i = 1, \ldots , L\). So, \(\hbox {m}({S^{ + + }})\) in Eq. (14) equals 0. If \({S^{ + + }} = \varTheta \), it’s easy to get \(\hbox {m}({S^{ + + }}) = \hbox {m}(\varTheta ) = {{\prod _{i = 1}^L {(1 - {\alpha _i})} } \mathord {\big / {} } {(1 - k)}}\). So,

$$\begin{aligned} \sum \limits _{{S^ - } \subseteq S} {\hbox {m}({S^ - })}&= 1 - \sum \nolimits _{{S^{ + + }} \supset S} {\hbox {m}({S^{ + + }})} \!=\! 1 - \sum \nolimits _{{S^{ + + }} \supset S,{S^{ + + }} \ne \varTheta } {\hbox {m}({S^{ + + }})} - \hbox {m}(\varTheta )\\&= 1 - \hbox {m}(\varTheta ) = 1 - {{\prod \limits _{i = 1}^L {(1 - {\alpha _i})} } \mathord {\Big / {} } {(1 - k)}}. \end{aligned}$$

Therefore, the reliability discounting and combination method only satisfies the completeness axiom when at least one source of evidence takes full reliability (\(\exists k \in \{ 1, \ldots ,L\} ,{\alpha _k} = 1\)).

Appendix C: Proof of Theorem 2

Suppose \({\hbox {m}_i}( \cdot )\) (\(i = 1, \ldots ,L\)) are \(L\) basic sources of evidence’s BBAs on the same frame of discernment \(\varTheta \) with importance factors \({\beta _i} \in [0,1]\) (\(i = 1, \ldots ,L\)). Denote \({\hbox {m}} ( \cdot )\) the integrated BBA with the proposed importance discounting and combination method.

As for the independence axiom, \(\forall S \in {2^\varTheta }{\setminus } \varTheta \), suppose \(\forall {S^ + } \supseteq S,\,{{\hbox {m}} _i}({S^ + }) = 0\) for all \(i = 1, \ldots ,L\). Discount all the \(L\) BBAs with their corresponding importance factors \({\beta _i}\) using the importance discounting operation displayed as Eq. (5), we can get the importance discounted IBBAs assigned to \({S^ + }\)

$$\begin{aligned} {{\hbox {m}} _i}^{{\beta _i}}(A) = 0,\forall A \supseteq S, {\hbox { for }}i = 1, \ldots ,L. \end{aligned}$$
(15)

Then, the extended Dempster’s rule of combination displayed as Eq. (7) will be used to get the integrated IBBAs assigned to \(S\)

$$\begin{aligned} {{\hbox {m}} ^{{\hbox {ED}}}}(S) = {{\sum \limits _{{X_i} \in {2^{{\varTheta ^ + }}};\bigcap \limits _{i = 1}^L {{X_i}} = S} {\prod \limits _{i = 1}^L {{\hbox {m}} _i^{{\beta _i}}({X_i})} } } \mathord {\Bigg / {} } {\left( {1 - \sum \limits _{{X_i} \in {2^{{\varTheta ^ + }}};\bigcap \limits _{i = 1}^L {{X_i}} = \emptyset } {\prod \limits _{i = 1}^L {{\hbox {m}} _i^{{\beta _i}}({X_i})} } } \right) }}. \end{aligned}$$
(16)

As \(\bigcap _{i = 1}^L {{X_i}} = S\), so \({X_i} \supseteq S\). According to Eq. (15), \({\hbox {m}} _i^{{\beta _i}}({X_i}) = 0\) for all \(i = 1, \ldots ,L\). Hence, \({{\hbox {m}} ^{{\hbox {ED}}}}(S)\) in Eq. (16) equals 0. It’s straightforward that \({\hbox {m}} (S) = {{{{\hbox {m}} ^{{\hbox {ED}}}}(S)} \mathord {\big / {} } {\left( {1 - {{\hbox {m}} ^{{\hbox {ED}}}}(\Omega )} \right) }} = 0\). That is, the importance discounting and combination method satisfies the independence axiom.

As for the consensus axiom, \(\forall S \in {2^\varTheta }{\setminus } \varTheta \), suppose \({{\hbox {m}} _i}(S) = 1\) for all \(i = 1, \ldots ,L\). Discount all the \(L\) BBAs with their corresponding importance factors \({\beta _i}\) using the importance discounting operation displayed as Eq. (5), we can get the importance discounted IBBAs

$$\begin{aligned} {{\hbox {m}}_i}^{{\beta _i}}(A) = \left\{ {\begin{array}{l@{\quad }l} {\beta _i}, &{}{\hbox {for }}A = S\\ 0, &{}{\hbox {for }}A \in {2^\varTheta },A \ne S {\hbox { for }}i = 1, \ldots ,L.\\ 1 - {\beta _i}, &{}{\hbox {for }}A = \Omega \end{array}} \right. \end{aligned}$$

Then, the extended Dempster’s rule of combination displayed as Eq. (7) will be used to integrate the importance discounted IBBAs

$$\begin{aligned} {{\hbox {m}} ^{{\hbox {ED}}}}(A) = 0, \forall A \in {2^\varTheta },A \ne S. \end{aligned}$$

According to Lemma 1, it holds that

$$\begin{aligned} \sum \limits _{A \in {2^{{\varTheta ^ + }}}} {{{\hbox {m}} ^{{\hbox {ED}}}}(A)}&= \sum \nolimits _{A \in {2^\varTheta },A \ne S} {{{\hbox {m}} ^{{\hbox {ED}}}}(A)} + {{\hbox {m}} ^{{\hbox {ED}}}}(S) + {{\hbox {m}} ^{{\hbox {ED}}}}(\Omega )\\&= {{\hbox {m}} ^{{\hbox {ED}}}}(S) + {{\hbox {m}} ^{{\hbox {ED}}}}(\Omega ) = 1. \end{aligned}$$

Furthermore, via the normalization in Eq. (8), we obtain

$$\begin{aligned} {\hbox {m}} (S) = \frac{{{{\hbox {m}} ^{{\hbox {ED}}}}(S)}}{{1 - {{\hbox {m}} ^{{\hbox {ED}}}}(\Omega )}} = \frac{{{{\hbox {m}} ^{{\hbox {ED}}}}(S)}}{{{{\hbox {m}} ^{{\hbox {ED}}}}(S)}} = 1. \end{aligned}$$

So, the importance discounting and combination method satisfies the consensus axiom.

As for the completeness axiom, \(\forall S \in {2^\varTheta }{\setminus } \varTheta \), suppose \(\sum \nolimits _{{S^ - } \subseteq S} {{{\hbox {m}} _i}({S^ - })} = 1\) for all \(i = 1, \ldots ,L\). We can know that \(\forall {S^{ + + }} \supset S,\,{{\hbox {m}}_i}({S^{ + + }}) = 0\). Discount all the \(L\) BBAs with their corresponding importance factors \({\beta _i}\) using the importance discounting operation displayed as Eq. (5), we can get the importance discounted IBBAs assigned to \({S^{ + + }}\)

$$\begin{aligned} {{\hbox {m}}_i}^{{\beta _i}}(A) = 0,\forall A \supset S,{\hbox { for }}i = 1, \ldots ,L. \end{aligned}$$
(17)

Then, the extended Dempster’s rule of combination displayed as Eq. (7) will be used to get the integrated IBBAs assigned to \({S^{ + + }}\)

$$\begin{aligned} {{\hbox {m}}^{{\hbox {ED}}}}({S^{ + + }}) \!=\! {{\sum \limits _{{X_i} \in {2^{{\varTheta ^ + }}};\bigcap \limits _{i = 1}^L {{X_i}} = {S^{ + + }}} {\prod \limits _{i = 1}^L {{\hbox {m}} _i^{{\beta _i}}({X_i})} } } \mathord {\Bigg / {} } {\left( {1 - \sum \limits _{{X_i} \in {2^{{\varTheta ^ + }}};\bigcap \limits _{i = 1}^L {{X_i}} = \emptyset } {\prod \limits _{i = 1}^L {{\hbox {m}}_i^{{\beta _i}}({X_i})} } } \right) }}.\nonumber \\ \end{aligned}$$
(18)

As \(\bigcap _{i = 1}^L {{X_i}} = {S^{ + + }}\), so \({X_i} \supseteq {S^{ + + }} \supset S\). According to Eq. (17), \({\hbox {m}}_i^{{\beta _i}}({X_i}) = 0\) for all \(i = 1, \ldots ,L\). Hence, \({{\hbox {m}}^{{\hbox {ED}}}}({S^{ + + }})\) in Eq. (18) equals 0. It’s straightforward that \({\hbox {m}} ({S^{ + +}}) = {{{{\hbox {m}}^{{\hbox {ED}}}}({S^{ + + }})} \mathord {/ {} } {( {1 - {{\hbox {m}} ^{{\hbox {ED}}}}(\Omega )} )}} = 0\). So, \(\sum \nolimits _{{S^ - }\subseteq S} {{\hbox {m}} ({S^ - })} = 1 - \sum \nolimits _{{S^{+ + }}\supset S} {{\hbox {m}} ({S^{ + + }})} = 1\). That is, the importance discounting and combination method satisfies the completeness axiom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, L., Pan, Q., Liang, Y. et al. Combining sources of evidence with reliability and importance for decision making. Cent Eur J Oper Res 24, 87–106 (2016). https://doi.org/10.1007/s10100-013-0334-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-013-0334-3

Keywords

Navigation