Abstract
Novel convex and concave relaxations are proposed for the solutions of parametric ordinary differential equations (ODEs), to aid in furnishing bounding information for deterministic global dynamic optimization methods. These relaxations are constructed as the solutions of auxiliary ODE systems with embedded convex optimization problems, whose objective functions employ convex and concave relaxations of the original ODE right-hand side. Unlike established relaxation methods, any valid convex and concave relaxations for the original right-hand side are permitted in the approach, including the McCormick relaxations and the \(\alpha \)BB relaxations. In general, tighter such relaxations will necessarily translate into tighter relaxations for the ODE solutions, thus providing tighter bounding information for an overarching global dynamic optimization method. Notably, if McCormick relaxations are employed in the new approach, then the obtained relaxations are guaranteed to be at least as tight as state-of-the-art ODE relaxations based on generalized McCormick relaxations. The new relaxations converge rapidly to the original system as the considered parametric subdomain shrinks. Several examples are presented for comparison with established ODE relaxations, based on a proof-of-concept implementation in MATLAB. In a global optimization case study, the new ODE relaxations are shown to lead to fewer branch-and-bound global optimization iterations than state-of-the-art relaxations.
Similar content being viewed by others
References
Acary, V., Pérignon, F.: Siconos: a software platform for modeling, simulation, analysis and control of nonsmooth dynamical systems. Simul. Notes Europe 17(34), 19–26 (2007)
Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-I. Theor. Adv. Comput. Chem. Eng. 22(9), 1137–1158 (1998)
Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: 2008 47th IEEE Conference on Decision and Control, pp. 4042–4048. IEEE (2008)
Banga, J.R., Alonso, A.A., Singh, R.P.: Stochastic dynamic optimization of batch and semicontinuous bioprocesses. Biotechnol. Prog. 13(3), 326–335 (1997)
Banga, J.R., Moles, C.G., Alonso, A.A.: Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 45–70. Springer (2004)
Berge, C.: Topological Spaces: Including a Treatment of Multi-valued Functions, Vector spaces, and Convexity. Oliver and Boyd, Edinburgh (1963)
Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.P.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)
Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Global Optim. 52(1), 1–28 (2012)
Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor models and McCormick–Taylor models. J. Global Optim. 57(1), 75–114 (2013)
Chachuat, B., Villanueva, M.: Bounding the solutions of parametric ODEs: when Taylor models meet differential inequalities. In: Bogle, I.D.L., Fairweather, M. (eds.) Computer Aided Chemical Engineering, vol. 30, pp. 1307–1311. Elsevier (2012)
Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: International Workshop on Hybrid Systems: Computation and Control, pp. 76–90. Springer (1999)
Čižniar, M., Podmajerskỳ, M., Hirmajer, T., Fikar, M., Latifi, A.M.: Global optimization for parameter estimation of differential-algebraic systems. Chem. Pap. 63(3), 274–283 (2009)
Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)
Diedam, H., Sager, S.: Global optimal control with the direct multiple shooting method. Optimal Control Appl. Methods 39(2), 449–470 (2018)
Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Global Optim. 5(3), 253–265 (1994)
Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)
Egea, J.A., Vazquez, E., Banga, J.R., Martí, R.: Improved scatter search for the global optimization of computationally expensive dynamic models. J. Global Optim. 43(2–3), 175–190 (2009)
Esposito, W.R., Floudas, C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5), 1291–1310 (2000)
Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15(9), 550–569 (1969)
Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)
Gomez, J.A., Höffner, K., Barton, P.I.: DFBAlab: A fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinform. 15(1), 409 (2014)
Harrison, G.: Dynamic models with uncertain parameters. In: Avula, X. (eds.) Proceedings of the 1st International Conference on Mathematical Modeling 1, 295–304 (1977)
Hartman, P.: Ordinary Differential Equations, 2nd edn. SIAM, Philadelphia (2002)
Harwood, S.M., Barton, P.I.: Efficient polyhedral enclosures for the reachable set of nonlinear control systems. Math. Control Signals Syst. 28(1), 8 (2016)
Harwood, S.M., Barton, P.I.: Affine relaxations for the solutions of constrained parametric ordinary differential equations. Optimal Control Appl. Methods 39(2), 427–448 (2018)
Harwood, S.M., Scott, J.K., Barton, P.I.: Bounds on reachable sets using ordinary differential equations with linear programs embedded. IMA J. Math. Control Inf. 33(2), 519–541 (2015)
Houska, B., Chachuat, B.: Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control. J. Optim. Theory Appl. 162(1), 208–248 (2014)
Huang, H., Adjiman, C.S., Shah, N.: Quantitative framework for reliable safety analysis. AIChE J. 48(1), 78–96 (2002)
Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10(3), 383–421 (2018)
Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice hall, Upper Saddle River (2002)
Khan, K.A., Barton, P.I.: Switching behavior of solutions of ordinary differential equations with abs-factorable right-hand sides. Syst. Control Lett. 84, 27–34 (2015)
Khan, K.A., Watson, H.A., Barton, P.I.: Differentiable McCormick relaxations. J. Global Optim. 67(4), 687–729 (2017)
Kurzhanski, A., Varaiya, P.: Reachability analysis for uncertain systems-the ellipsoidal technique. Dyn. Contin. Discrete Impulsive Syst. Ser. B 9, 347–368 (2002)
Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Global Optim. 25(2), 157–168 (2003)
Lin, Y., Stadtherr, M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45(25), 8438–8448 (2006)
Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)
Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2), 143–182 (1995)
MATLAB: 9.6.0.1072779 (R2019a). The MathWorks Inc., Natick (2019)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)
Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equations. J. Global Optim. 59(2–3), 503–526 (2014)
Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)
Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Müller, M.: Über das fundamentaltheorem in der theorie der gewöhnlichen differentialgleichungen. Math. Z. 26(1), 619–645 (1927)
Najman, J., Mitsos, A.: Tighter McCormick relaxations through subgradient propagation. J. Global Optim. 75(3), 565–593 (2019)
Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)
Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer, Cham (2018)
Papamichail, I., Adjiman, C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Global Optim. 24(1), 1–33 (2002)
Park, T., Barton, P.I.: State event location in differential-algebraic models. ACM Trans. Model. Comput. Simul. TOMACS 6(2), 137–165 (1996)
Pérez-Galván, C., Bogle, I.D.L.: Global optimisation for dynamic systems using interval analysis. Comput. Chem. Eng. 107, 343–356 (2017)
Rackauckas, C., Nie, Q.: Differentialequations. jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1), 15 (2017)
Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8(2), 107–138 (1996)
Sahinidis, N.V.: BARON: A general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)
Sahlodin, A.M., Chachuat, B.: Discretize-then-relax approach for state relaxations in global dynamic optimization. In: Pierucci, S., Buzzi-Ferraris, G. (eds.) Computer Aided Chemical Engineering, vol. 28, pp. 427–432. Elsevier (2010)
Sahlodin, A.M., Chachuat, B.: Convex/concave relaxations of parametric ODEs using Taylor models. Comput. Chem. Eng. 35(5), 844–857 (2011)
Schaber, S.D., Scott, J.K., Barton, P.I.: Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs. J. Global Optim. 73(1), 113–151 (2019)
Scott, J.K.: Reachability analysis and deterministic global optimization of differential-algebraic systems. Ph.D. thesis, Massachusetts Institute of Technology (2012)
Scott, J.K., Barton, P.I.: Tight, efficient bounds on the solutions of chemical kinetics models. Comput. Chem. Eng. 34(5), 717–731 (2010)
Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems. Automatica 49(1), 93–100 (2013)
Scott, J.K., Barton, P.I.: Improved relaxations for the parametric solutions of ODEs using differential inequalities. J. Global Optim. 57(1), 143–176 (2013)
Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Optimal Control Appl. Methods 34(2), 145–163 (2013)
Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Global Optim. 51(4), 569–606 (2011)
Singer, A.B., Barton, P.I.: Bounding the solutions of parameter dependent nonlinear ordinary differential equations. SIAM J. Sci. Comput. 27(6), 2167–2182 (2006)
Singer, A.B., Taylor, J.W., Barton, P.I., Green, W.H.: Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. A 110(3), 971–976 (2006)
Smith, E.M., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)
Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999)
Song, Y., Khan, K.A.: Comparing solutions of related ordinary differential equations using new differential inequalities. Under review
Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. 30(3), 424–460 (2015)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Springer, Dordrecht (2002)
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)
Thibault, L.: On subdifferentials of optimal value functions. SIAM J. Control Optim. 29(5), 1019–1036 (1991)
Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Global Optim. 59(2–3), 633–662 (2014)
Villanueva, M.E., Houska, B., Chachuat, B.: Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs. J. Global Optim. 62(3), 575–613 (2015)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Walter, W.: Differential and Integral Inequalities. Springer, New York (1970)
Watson, H.A., Vikse, M., Gundersen, T., Barton, P.I.: Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models. Energy 150, 860–876 (2018)
Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Global Optim. 58(3), 429–438 (2014)
Wilhelm, M., Stuber, M.D.: Easy Advanced Global Optimization (EAGO): An open-source platform for robust and global optimization in Julia. In: 2017 AIChE Annual Meeting. AIChE (2017)
Wilhelm, M.E., Le, A.V., Stuber, M.D.: Global optimization of stiff dynamical systems. AIChE J 65(12), e16836 (2019)
Yang, X., Scott, J.K.: Efficient reachability bounds for discrete-time nonlinear systems by extending the continuous-time theory of differential inequalities. In: 2018 Annual American Control Conference (ACC), pp. 6242–6247. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN-2017-05944.
Rights and permissions
About this article
Cite this article
Song, Y., Khan, K.A. Optimization-based convex relaxations for nonconvex parametric systems of ordinary differential equations. Math. Program. 196, 521–565 (2022). https://doi.org/10.1007/s10107-021-01654-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-021-01654-x