Abstract
We define a reduction mechanism for LP and SDP formulations that degrades approximation factors in a controlled fashion. Our reduction mechanism is a minor restriction of classical hardness reductions requiring an additional independence assumption and it allows for reusing many hardness reductions that have been used to show inapproximability in the context of PCP theorems. As a consequence we establish strong linear programming inapproximability (for LPs with a polynomial number of constraints) for many problems. In particular we obtain a \(\frac{3}{2}-\varepsilon \) inapproximability for
answering an open question in Chan et al. (Proceedings of FOCS, pp. 350–359, 2013, https://doi.org/10.1109/FOCS.2013.45) and prove an inapproximability factor of \(\frac{1}{2}+\varepsilon \) for bounded degree
. In the case of SDPs, we obtain inapproximability results for these problems relative to the SDP-inapproximability of \({\textsf {MaxCUT}}_{}\). Moreover, using our reduction framework we are able to reproduce various results for CSPs from Chan et al. (Proceedings of FOCS, pp. 350–359, 2013, https://doi.org/10.1109/FOCS.2013.45) via simple reductions from Max-\(2\)-XOR.
Similar content being viewed by others
References
Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: \(O(\sqrt{\log n})\) approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems. In: Proceedings of STOC, pp. 573–581. ACM (2005)
Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent set in bounded degree graphs. In: Computational Complexity, CCC, pp. 74–80. IEEE (2009)
Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approximates vertex cover within a factor \(2-\epsilon \). In: Proceedings of FOCS, pp. 1123–1142 (2015)
Braun, G., Pokutta, S.: The matching polytope does not admit fully-polynomial size relaxation schemes. In: Proceedings of SODA, pp. 837–846 (2015). https://doi.org/10.1137/1.9781611973730.57
Braun, G., Pokutta, S.: Common information and unique disjointness. Algorithmica 76(3), 597–629 (2016)
Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear programs (beyond hierarchies). In: Proceedings of FOCS, pp. 480–489 (2012). ISBN 978-1-4673-4383-1. https://doi.org/10.1109/FOCS.2012.10
Braun, G., Fiorini, S., Pokutta, S.: Average case polyhedral complexity of the maximum stable set problem. In: Proceedings of RANDOM (2014). http://www.dagstuhl.de/dagpub/978-3-939897-74-3. Accessed 12 Jan 2018
Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear programs (beyond hierarchies). Math. Oper. Res. (2014). https://doi.org/10.1287/moor.2014.0694
Braun, G., Jain, R., Lee, T., Pokutta, S.: Information-theoretic approximations of the nonnegative rank. Comput. Complex. 1–51 (2014). http://eccc.hpi-web.de/report/2013/158
Braun, G., Pokutta, S., Zink, D.: Inapproximability of combinatorial problems via small LPs and SDPs. In: Proceeedings of STOC (2015)
Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., Zink, D.: The matching problem has no small symmetric SDP. In: Proceedings of SODA, pp. 1067–1078 (2016)
Braun, G., Fiorini, S., Pokutta, S.: Average case polyhedral complexity of the maximum stable set problem. Math. Program. 160(1), 407–431 (2016)
Braun, G., Pokutta, S., Roy, A.: Strong reductions for extended formulations. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 350–361. Springer (2016)
Braverman, M., Moitra, A.: An information complexity approach to extended formulations. In: Proceedings of STOC, pp. 161–170 (2013)
Briët, J., Dadush, D., Pokutta, S.: On the existence of 0/1 polytopes with high semidefinite extension complexity. Math. Program. 153(1), 179–199 (2015)
Chan, S., Lee, J., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large LP relaxations. In: Proceedings of FOCS, pp. 350–359 (2013). https://doi.org/10.1109/FOCS.2013.45
Chan, S.O.: Approximation resistance from pairwise independent subgroups. In: Proceedings of STOC, pp. 447–456. ACM (2013). ISBN 978-1-4503-2029-0. https://doi.org/10.1145/2488608.2488665
Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali–Adams relaxations. In: Proceedings of STOC, pp. 283–292 (2009)
Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Comput. Complex. 15(2), 94–114 (2006)
Chlebík, M., Chlebíková, J.: On approximation hardness of the minimum 2SAT-DELETION problem. In: Mathematical Foundations of Computer Science 2004, pp. 263–273. Springer (2004)
Engebretsen, L., Karpinski, M.: Approximation hardness of TSP with bounded metrics. In: Automata, Languages and Programming, volume 2076 of Lecture Notes in Computer Science, pp. 201–212. Springer, Berlin (2001). ISBN 978-3-540-42287-7 (print) and 978-3-540-48224-6 (online). https://doi.org/10.1007/3-540-48224-5_17. http://theory.cs.uni-bonn.de/ftp/reports/cs-reports/2000/85220-CS.pdf. Accessed 12 Jan 2018
Feige, U., Goemans, M.: Approximating the value of two power proof systems, with applications to Max 2SAT and Max DICUT. In: Theory of Computing and Systems, 1995. Proceedings, Third Israel Symposium on the, pp. 182–189. IEEE (1995)
Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete. In: Proceedings of FOCS, pp. 2–12. IEEE Comput. Soc. Press (1991). ISBN 0-8186-2445-0. https://doi.org/10.1109/SFCS.1991.185341
Feige, U., Karpinski, M., Langberg, M.: Improved approximation of Max-Cut on graphs of bounded degree. J. Algorithms 43(2), 201–219 (2002). ISSN 0196-6774. https://doi.org/10.1016/S0196-6774(02)00005-6. http://www.paradise.caltech.edu/~mikel/papers/deg_cut.ps
Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of STOC (2012)
Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995). https://doi.org/10.1145/227683.227684
Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes. In: Proceedings of FOCS, pp. 565–572. IEEE (2016)
Gouveia, J., Parrilo, P.A., Thomas, R.R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2), 248–264 (2013)
Håstad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–859 (2001)
Kaibel, V., Weltge, S.: A short proof that the extension complexity of the correlation polytope grows exponentially. Discrete Comput. Geom. 53(2), 397–401 (2015)
Kann, V., Khanna, S., Lagergren, J., Panconesi, A.: On the hardness of approximating Max-\(k\)-CUT and its dual. Chic. J. Theor. Comput. Sci. 2, 1–18 (1997)
Karloff, H.: How good is the Goemans–Williamson MAX CUT algorithm? SIAM J. Comput. 29(1), 336–350 (1999). https://doi.org/10.1137/S0097539797321481
Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. In: Algorithms and Computation, volume 8283 of Lecture Notes in Computer Science, pp. 568–578. Springer, Berlin (2013). ISBN 978-3-642-45029-7 (print) and 978-3-642-45030-3 (online). https://doi.org/10.1007/978-3-642-45030-3_53
Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2001)
Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007). https://doi.org/10.1137/S0097539705447372
Kothari, P., Meka, R., Raghavendra, P.: Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs. arXiv preprint arXiv:1610.02704 (2016)
Lee, J., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite programming relaxations. In: Proceedings of STOC (2015)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)
Pashkovich, K.: Extended formulations for combinatorial polytopes. Ph.D. thesis, Magdeburg Universität (2012)
Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations. Math. Program. 142(1–2), 255–268 (2013)
Rothvoß, T.: The matching polytope has exponential extension complexity. In: Proceedings of STOC (2014)
Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: Proceedings of FOCS, pp. 593–602 (2008). https://doi.org/10.1109/FOCS.2008.74
Schrijver, A.: Theory of Linear Programming. Wiley-Interscience, New York (1986)
Singh, M.: Bellairs workshop on approximation algorithms. Open Probl. Sess. 1, 2 (2010)
Trevisan, L.: Parallel approximation algorithms by positive linear programming. Algorithmica 21(1), 72–88 (1998). ISSN 0178-4617 (print) and 1432-0541 (online). https://doi.org/10.1007/PL00009209
Tulsiani, M.: CSP gaps and reductions in the Lasserre hierarchy. In: Proceedings of STOC, pp. 303–312. ACM (2009)
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs (extended abstract). In: Proceedings of STOC, pp. 223–228 (1988)
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991). https://doi.org/10.1016/0022-0000(91)90024-Y
Acknowledgements
Research reported in this paper was partially supported by NSF Grant CMMI-1300144 and NSF CAREER Grant CMMI-1452463. The authors would like to thank James Lee for the helpful discussions regarding max-CSPs. We are indebted to Siu On Chan for some of the PCP inapproximability bounds as well as Santosh Vempala for the helpful discussions as well as the anonymous reviewers for significantly improving the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Braun, G., Pokutta, S. & Zink, D. Affine reductions for LPs and SDPs. Math. Program. 173, 281–312 (2019). https://doi.org/10.1007/s10107-017-1221-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-017-1221-9