Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Conic version of Loewner–John ellipsoid theorem

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We extend John’s inscribed ellipsoid theorem, as well as Loewner’s circumscribed ellipsoid theorem, from convex bodies to proper cones. To be more precise, we prove that a proper cone \(K\) in \(\mathbb {R}^n\) contains a unique ellipsoidal cone \(Q^\mathrm{in}(K)\) of maximal canonical volume and, on the other hand, it is enclosed by a unique ellipsoidal cone \(Q^\mathrm{circ}(K)\) of minimal canonical volume. In addition, we explain how to construct the inscribed ellipsoidal cone \(Q^\mathrm{in}(K)\). The circumscribed ellipsoidal cone \(Q^\mathrm{circ}(K)\) is then obtained by duality arguments. The canonical volume of an ellipsoidal cone is defined as the usual \(n\)-dimensional volume of a certain truncation of the cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball., K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol. 31, pp. 1–58. Cambridge University Press, Cambridge (1997)

  2. Berman, A., Neumann, M., Stern, R.J.: Nonnegative Matrices in Dynamic Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  3. Calafiore, G.C.: Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE Trans. Syst. Man Cybern. 32, 269–278 (2002)

    Article  Google Scholar 

  4. Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. 9, 13–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14, 641–664 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  7. Fisher, D.D.: Minimum ellipsoids. Math. Comput. 18, 669–673 (1964)

    Article  MATH  Google Scholar 

  8. Goffin, J.-L.: The relaxation method for solving systems of linear inequalities. Math. Oper. Res. 5, 388–414 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gourion, D., Seeger, A.: Deterministic and stochastic methods for computing volumetric moduli of convex cones. Comput. Appl. Math. 29, 215–246 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Gourion, D., Seeger, A.: Solidity indices for convex cones. Positivity 16, 685–705 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21, 860–885 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Güler, O., Gürtuna, F.: Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies. Optim. Methods Softw. 27, 735–759 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gruber, P.M.: John and Loewner ellipsoids. Discrete Comput. Geom. 46, 776–788 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Henk, M.: Löwner–John ellipsoids. Doc. Math. Extra Vol. Optim. Stor., 95–106 (2012)

  15. Henrion, R., Seeger, A.: On properties of different notions of centers for convex cones. Set-Valued Var. Anal. 18, 205–231 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Henrion, R., Seeger, A.: Inradius and circumradius of various convex cones arising in applications. Set-Valued Var. Anal. 18, 483–511 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Iusem, A., Seeger, A.: Pointedness, connectedness, and convergence results in the space of closed convex cones. J. Convex Anal. 11, 267–284 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Iusem, A., Seeger, A.: Axiomatization of the index of pointedness for closed convex cones. Comput. Appl. Math. 24, 245–283 (2005)

    MATH  MathSciNet  Google Scholar 

  19. Iusem, A., Seeger, A.: Distances between closed convex cones: old and new results. J. Convex Anal. 17, 1033–1055 (2010)

    MATH  MathSciNet  Google Scholar 

  20. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Studies and Essays Presented to R. Courant on his 60th Birthday. Interscience Publ, New York (1948)

    Google Scholar 

  21. Kelly, L.M., Murty, K.G., Watson, L.T.: CP-rays in simplicial cones. Math. Program. 48, 387–414 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lasserre., J.B.: A generalization of Löwner–John’s ellipsoid theorem. Math. Program. Ser. A (2014). doi:10.1007/s10107-014-0798-5

  23. Nesterov, Y., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, Philadelphia, PA (1994)

    Book  MATH  Google Scholar 

  24. Seeger, A., Torki, M.: On highly eccentric cones. Beitr. Algebra Geom. 55, 521–544 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seeger, A., Torki, M.: Centers of sets with symmetry or cyclicity properties. TOP 22, 716–738 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Seeger., A, Torki., M.: Centers and partial volumes of convex cones. I. Basic theory. Beitr. Algebra Geom. online since (Sept 2014)

  27. Seeger., A, Torki., M.: Centers and partial volumes of convex cones. II. Advanced topics. Beitr. Algebra Geom., online since (Sept 2014)

  28. Sitarz, S.: The medal points’ incenter for rankings in sport. Appl. Math. Lett. 26, 408–412 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stern, R., Wolkowicz, H.: Invariant ellipsoidal cones. Linear Algebra Appl. 150, 81–106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stern, R., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12, 160–165 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Moskow Math. 12, 340–403 (1963)

    MATH  Google Scholar 

  32. Walkup, D.W., Wets, R.J.B.: Continuity of some convex-cone-valued mappings. Proc. Am. Math. Soc. 18, 229–235 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  33. Weber, M.J., Schröcker, H.P.: Davis’ convexity theorem and extremal ellipsoids. Beitr. Algebra Geom. 51, 263–274 (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Seeger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeger, A., Torki, M. Conic version of Loewner–John ellipsoid theorem. Math. Program. 155, 403–433 (2016). https://doi.org/10.1007/s10107-014-0852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0852-3

Keywords

Mathematics Subject Classification

Navigation